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DERIVATIVES AND PERTURBATIONS OF EIGENVECTORS* 

CARL D. MEYERt AND G. W. STEWARTt 

Abstract. For a matrix A(z) whose entries are complex valued functions of a complex variable z, results 
are presented concerning derivatives of an eigenvector x(z) of A(z) associated with a simple eigenvalue 
A(z) when x(z) is restricted to satisfy a constraint of the form a(x(z))= 1 where a is a rather arbitrary 
scaling function. The differentiation formulas lead to a new approach for analyzing the sensitivity of an 
eigenvector under small perturbations in the underlying matrix. Finally, an application is given which 
concerns the analysis of a finite Markov chain subject to perturbations in the transition probabilities. 

Key words. perturbations, eigenvectors, derivative of eigenvectors, Markov chains 

AMS(MOS) subject classifications. 15A13, 65F15, 65F35, 15A12, 15A51, 15A42, 15A09 

1. Introduction. For a matrix A(z) whose entries are complex valued functions 
of a complex variable z, we present results concerning derivatives of an eigenvector 
x(z) of A(z) associated with a simple eigenvalue A (z) when x(z) is restricted to satisfy 
a constraint of the form o-(x(z)) = 1 where or is a rather arbitrary scaling function. Our 
differentiation formulas lead to a new approach for analyzing the sensitivity of an 
eigenvector under small perturbations in the underlying matrix. 

The application which motivated this study was the problem of obtaining the 
derivatives of the stationary probabilities associated with an irreducible finite Markov 
chain in order to study the effects of small perturbations in such chains. Some of the 
formulas derived herein are generalizations of results presented by Golub and Meyer 
[1986], Deutsch and Neumann [1985], Conlisk [1983], and Schweitzer [1968]. 

2. Background material. We shall be concerned with the perturbation of an eigen- 
vector x of a matrix A,,n associated with a simple eigenvalue A. Let y denote the 
corresponding left-hand eigenvector such that yHx = 1. If Ufl)(_1 is a matrix whose 
columns form an orthonormal basis for R(A - AI), (R( * ) will denote range and N(*) 
will denote nullspace) then P = (x I U) is nonsingular and it is easy to verify that 

p1 _ H, Y 

(UH(I-xyH). 

The matrix P-1(A-A I)P has the form 

(2.1) P-1(A-AI)P=( C-Al) 

where C = UHAU. Since A is simple, (C -AI) is nonsingular and the matrix 

(2.2) (A-AI) = (o (C-AI)-') 1 

is well defined. The matrix (A -A I)# is called the group inverse of (A -AI) because it 
is the inverse of (A - AI) in the maximal multiplicative subgroup containing (A - AI). 
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680 C. D. MEYER AND G. W. STEWART 

Since our results will be cast in terms of the group inverse (A-AI)#, we will 
collect here its properties which we will use in the sequel. Each of the following may 
easily be derived from (2.2). Proofs and additional material on group inversion may 
be found in Campbell and Meyer [1979]. 

(2.3) A matrix A belongs to a multiplicative group I if and only if Rank (A2) - 
Rank (A). With respect to the group W, the matrix A has a unique inverse A# 
and there is a unique identity element E = AA# = A#A. 

(2.4) If A belongs to a multiplicative group W, then the inverse of A with respect 
to W is the unique matrix A# satisfying the three equations AA#A = A, 
A#AA# = A#, and AA# = A#A. Pay attention to the fact that A# is different 
from the more familiar pseudo-inverse At (known as the Moore-Penrose 
inverse). Group inversion has the desirable property that 

(P-IAP)# = P-WA#P. 

This is generally not true for the pseudo-inverse At. It is precisely this property 
that makes group inversion useful when dealing with questions involving 
eigensystems. See property (2.8) below. 

(2.5) If A is a group matrix and be R(A), then the set of all solutions for u in 
Au= b is given by u = A#b+ N(A). 

(2.6) The group identity element E = AA# = A#A is the projector onto R(A)= 
R(A#) along N(A) = N(A#) and the matrix I - E is the spectral projector 
associated with the zero eigenvalue of A. 

(2.7) If the entries of A(z) are continuous functions of z on a domain D and if 
Rank (A(z)) remains constant on D, then the entries of A#(z) are also 
continuous functions of z. 

(2.8) For a scalar A, 

A_1/Ak if A 0 0, 
lo if Ak=0. 

A vector x is an eigenvector for A corresponding to the eigenvalue A if and 
only if x is an eigenvector for A# corresponding to the eigenvalue A', i.e., 
Ax = Ax if and only if A#x = A #x. 

3. Main results. Throughout this section, assume that A = A(z) is a matrix whose 
elements aij are well-defined complex valued functions of a complex variable z = a + if3 
on some domain D. Let A = A (z) be an eigenvalue for A with associated eigenvector 

x=x(z) -u(a, /3)+iv(a, /3). 

Assume that zo = ao + i,60 is a point in D such that A (zo) is a simple eigenvalue for 
A(zo) and that A'(zo), x'(zo), and A'(zo) each exist. (We use prime notation to denote 
differentiation with respect to the complex variable z.) For another vector ynxi(Z) such 
that y'(zo) also exists, let o-(x, y) be a scalar valued function defined on C2'. The 
function of is usually thought of as a scaling function. One standard example of such 
a function is the inner product a(x, y) = yHx. 

Write x and y as 

x=u(a,fl)+iv(a,/3), y = p(a, 3) +iq(a, 3) 
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DERIVATIVES OF EIGENVECTORS 681 

where u, v, p, q are real valued functions of two real variables, a and ,3 and consider 
o- = o-(u, v, p, q) to be a function of the four real vector variables u, v, p, and q. If x'(z0) 
and y'(z0) each exist, then the Cauchy-Riemann equations hold at (an, ,30). That is, 

(3.1) ua (ao, 13o) = vp (ao, /30) and up (ao,,3o) =-va(ao,,3o), 

P((ao, 30) = qp(ao, /36) and pp(ao, I30) = -qa(ao, 3o), 

where the subscripts denote partial differentiation. Extend the subscript notation by 
defining a,x and ty to be the vectors 

(3.2) ax-r-u + irv and try -Jp + iHp, 

where aru, irv, ap, aq are understood to represent the columns 

d( faul o-/av1/ a-/dap1 ao/-l 
au=ta0-1aU2 a, v 1d/V2 a, p t 1aP a a = aq2 

d(TdU I (/v d(pn d(T/dQn 

Our primary goal is to examine the components of the derivative x'(z0) when x 
is constrained to satisfy o-(X, y) = K on D where K is a real valued constant. 

THEOREM 1. Let A=A(z), A =A(z), and x=x(z) be a matrix, eigenvalue, and 
associated eigenvector, which are defined on some domain D. Let zo = ao + i/30 be a point 
in D such that A (zo) is simple and A'(zo), A'(zo), and x'(zo) each exist. Suppose that 
y = y(z) is a vector which is also defined on D such that y'(zo) exists and let o-(x, y) be 
a function whose value is a real scalar constant for all z in D. If 

orHxOO atz=zo, 

then the derivative of x at zo is given by 

(3.3) XjI j x-(A-,(AI)#A'x atz=zo 

where arx and cry are as defined in (3.2). 
Proof. We first must establish that the following equation holds for z z= : 

(3.4) aHx '+ a Hyt = o. 

To do this, use the fact that the Cauchy-Riemann conditions (3.1) hold at z0 and write 

arx x + y y =(aru-icrv )(u +i )+( aq )(Pa + iqa ) 
T Tvc + T 

Ta+CT TPa (3.5) (=j (u + Jv a + pPa + 4tqa) + i(tvuTVa Ua+ apqa-qpa) 

= (CrUT +CrVTVc +CrTp +aT )iaTUl +TVp + CrTpp3 + trTq3 (u+ av+ Pap+ Trqqai(~Trup + zrTv +4p +qqp). 

Since o- = o-(u(a, ,3), v(a, ,3), p(a, ,3), q(a, ,3)) is constant on D, it follows that ao-/a = 

a-/a,8 = 0 on D. Assuming all derivatives exist and are continuous in the proper sets, 
we note the chain rule yields 

dsr E ao- aui + ao avi + a dpi+ ao a\qi 
aar i duu aa avi aa api aa aqi aa 

= Tuu +Cr TVc + C4TPa +4qaC =0 

This content downloaded from 149.173.29.128 on Wed, 5 Nov 2014 15:52:43 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


682 C. D. MEYER AND G. W. STEWART 

and 

d?- E o. ads dUl+ dSvi+a d api+ au dqih 
ap iadui a3 avi a3 api a/3 aqi a/3 

= a1Up + 4TVP + Tpp] + 4Fqp = 0 

at zo. Using these last two equations in (3.5) produces the desired conclusion that 
z4Hx' + 4Hy'=0 at zo. We now proceed with the derivation of the derivative formula 
(3.3). We start with (A - AI)x = 0 and apply the elementary product rule to obtain 

(A-AI)x'=-(A'-A'I)x atz=zo. 

Because x is a basis for N(A -Al), it follows from (2.5) that there must exist a scalar 
8 such that 

x'=86x-(A-AI)#(A'-A'I)x atz=zo. 

It follows from the properties of group inversion given in ?2 that N(A-Al)= 
N(A -AAI)# so that the above expression for x' reduces to 

x'=Ax-(A-A I)#A'x atz=zo. 

Now use this expression for x' in the relationship of (3.4) to produce 

0 = aHxx + (yTy = bHX x-ax (A-A 1) A x + ayy at z = zo. 

Therefore the scalar 8 must be given by 

z4H(A-AI)#AxOzA'x y-aH 
8=-, x a y at z = zo 

oxx 

and the desired formula given in (3.3) now follows. O 
By making various choices of the scaling function o-, some insight into the problem 

of eigenvector sensitivity can be obtained. 
COROLLARY 1. If, in addition to the hypothesis of Theorem 1, y = y(z) is a column 

vector such that yHX is real valued and if yHX = 1 on D, then the derivative of x at zo is 
given by thefollowing expression: 

(3.6) x' = {YH(A - A I)#A'x - XHY,}X- (A - A I)#A'x. 

Proof. Take the scaling function o- of Theorem 1 to be o((x, y) = yHx. If x = u + iv 
and y = p + iq, where u, v, p, q, are real valued functions of a and ,3, then 

r(x, y) = yHX = (PT- iqT)(u + iV) = (PTU + qTv) + i(pTv- qTu) pTT + qTv 

because yHX is assumed to be real valued. According to (3.2), 

arx=4aU+icr,=p+iq=y and Ty =4 p+iCq =U+iv=X 

so that 4rHx = yHx = 1 at zo and thus the desired result (3.6) is produced. D 
If, in addition to the hypothesis of Corollary 1, y is assumed to be a left-hand 

eigenvector for A associated with A (i.e., yH(A - Al) = 0), then the following corollary 
is produced. 

COROLLARY 2. If y is a left-hand eigenvector for A associated with A such that 
yHX = 1, then the derivative of x at zo is given by the following expression. 

(3.7) x= -{(xHy')x + (A-A -I)#A'x}. 
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DERIVATIVES OF EIGENVECTORS 683 

Perhaps the most common normalization technique is to require that xHx = 1. By 
imposing this constraint, a useful formula for the derivative of x can be derived from 
which the effects of perturbations can easily be uncovered. These results are presented 
in the next theorem. 

THEOREM 2. If under the hypothesis of Theorem 1, x is constrained to satisfy XHX = 1 
everywhere on D, then 

(3.8) x' = {XH(A-AI)#AFx}x - (A-AI)#A'x at z =zo 

and 

(3.9) IIXFII= |sin 0| II(A-A1I)#A'XII at z= zo 

where 0 is the angle between x and (A - AI)#A'x. Moreover, if w = x(z) is a left-hand 
eigenvectorfor A associated with an eigenvalue A = A (z) $ A (z) and if llwll = 1 everywhere 
on D, then 

(3.10) I|A 1 _ | II(A- AI)# IIA'| at z =ZO IA -Al 
where the vector norm is assumed to be the euclidean norm and the matrix norm can be 
taken to be any matrix norm which is compatible with the euclidean vector norm. 

Proof To prove (3.8), let y = x in Corollary 1 so that o-(x, y) = o-(X, x)-XHX. Use 
the fact that (3.4) holds at zo to conclude that XHXP = 0 at zo. Thus (3.8) follows from 
(3.6). To derive (3.9), let B denote the matrix B = (A- AI)#A' and let 8 denote the scalar 

8 =XHBx= (cos 0)IIBxII 

where 0 is the angle between x and Bx. It follows that 

IIX112 = X,HX,= I=B11x I I82 

= IlBxII2-(cos2 0)IIBxII2 

= (sin2 a) IIBxII2. 

To obtain the leftmost inequality of (3.10), multiply (3.8) on the left by WH and use 
the fact that WHX = 0 in order to produce 

w Hx =-wH(A-AI)#A'x. 

Since w is a left-hand eigenvector for (A - AI) with associated eigenvalue (A - A), 
property (2.8) guarantees that w is a left-hand eigenvector for (A - AI)# corresponding 
to the eigenvalue (,u-A )1 Thus 

HA' 
wH x=wAx H,WA x/ A-, 

The Cauchy-Schwarz inequality now produces 

IwHAKxKIX 
Tergtot0 isdi c uXIe of ( 

The rightmost inequality in (3.10) is a direct consequence of (3.9). D 
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684 C. D. MEYER AND G. W. STEWART 

In passing, we remark that any component (say the kth component) of x'(z0) is 
easily isolated. Under the hypothesis of Theorem 2, we have 

(3.8') X = {X'(A-AI)#A'X}Xk-(A-AI) * A'x at z = zo 

where (A-AI)'. denotes the kth row of (A-AI)#. 
For the case of a constant matrix, the results of Theorem 2 present a complete 

statement concerning the sensitivity of an eigenvector (associated with a simple eigen- 
value) to pertubations in the underlying matrix. Formulas (3.8) and (3.8') show precisely 
how the entries of x change as entries of A change. The leftmost inequality in (3.10) 
is a reaffirmation of the well-known fact that an eigenvector will exhibit sensitivities 
to some perturbation of the underlying matrix when the associated eigenvalue lies near 
another eigenvalue. The rightmost inequality in (3.10), along with the expressions (3.8) 
and (3.8'), show that the magnitude of the matrix (A - AI)# is the measure of maximum 
sensitivity. Moreover, it is apparent from Theorem 2 that (A - A I)# is always a multiplier 
on A' and hence 11(A - A I)# may be interpreted as a condition number that gauges 
the sensitivity of the associated eigenvector. 

Another standard normalization technique is to use a left-hand eigenvector y for 
A associated with A such that y y= 1 and constrain the corresponding right-hand 
eigenvector x to satisfy yHx = 1. For this normalization procedure, the next corollary 
gives the expression of the derivative of x at zo. 

COROLLARY 3. If, in addition to the hypothesis of Theorem 1, y is a left-hand 
eigenvector associated with A such that yHy = 1 and if x is the corresponding right-hand 
eigenvector such that yHx = 1 everywhere on D, then the derivative of x at zo is given by 

X = -{yHA'(A - A I)#y}x - (A - A I)#A'x. 

Proof. From (3.7) in Corollary 2, we know that 

X' = -{(xHy')x+ (A- AI)#A'x} at z = zo. 

The left-hand analogue of Theorem 2 guarantees that at z = zo, y,H must be given by 

YH = {YH A'(A-A -I)YYH _YH-A'(A-A I) #. 

Substituting this last expression into the preceding expression for x'(zo) and using the 
fact that (A -AI)#x =0 produces the desired conclusion. D 

It is interesting to observe what happens in Theorem 2 when A is a symmetric 
matrix. 

COROLLARY 4. If, in addition to the hypothesis of Theorem 2, the matrix A is real 
and symmetric, then at z = zo 

(3.11 ) x' = -(A -A I)#*A'X 

and 

(3.12) IwAA'xI I ix' 'iI IA'l 
IA-AM 

= . IA-AI 
where A (#A) is the eigenvalue of A which is closest to A and where the matrix norm is 
the spectral norm. 

Proof. If A is real and symmetric, then XT is a left-hand eigenvector for A associated 
with X. Hence xT(A-AI)#=0 so that (3.8) reduces to (3.11). To obtain (3.12), note 
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DERIVATIVES OF EIGENVECTORS 685 

that if P is an orthogonal matrix such that 

O A2-A O ... 0 
PT(A-AI)P=(O O- A3-A * * 

O O O ... An-A/ 

then 

(A-Af 0 .. 0 
? (A2 -A ) 0 .. * 

(A-AI)#=P 0 O (A3-A) .1 . 0 T 

O O 0 *.. (An-A) 

so that 

II(A-AI)#I12 = - 

mmn IA -Ail 
A, 54 A 

Observe that (3.11) holds even in the more general case of EP matrices. That is, 
for matrices such that N(A) = N(AH). 

4. Relation between II(A-AI)#II and the SEP function. Stewart [1971] defined the 
separation between two matrices B and C to be 

TIIT-1'I if T-' exists, 
Sep (B, C) = othrwis 

0o otherwise 

where T is the linear operator defined by T(X) = XB - CX. This function was used by 
Stewart to bound perturbations in invariant subspaces. In the context of this paper, it 
is only natural to inquire about the relation between 11(A-AI)#II and Sep-' (A, C)= 
II(C-AI)-'II where C is the matrix defined in (2.1). 

THEOREM 3. For Anxn, let x be an eigenvector of unit 2-norm associated with the 
simple eigenvalue A and let Unxn-I be a matrix whose columnsform an orthonormal basis 
for R(A-AI). Let C==UHAU be the matrix in (2.1). If A is normal, then 

(4.1) Sep` (A, C) = II(A-A I)# 11. 
In general, 

(4.2) Sep` (A, C) = - (AA I)#U II 
and 

(4.3) 
1 

-Sep (A, C) '-(A- AI)#||. jjA-AIklj 
The matrix norm is the spectral norm. 

Proof. If A is normal, then the matrix P in (2.2) can be taken to be unitary and 
equation (4.1) clearly follows. In general, (2.2) yields 

(4.4) (C -_AI)1 = UH(I - xyH)(A - kI)#U = UH(A -A I)#U. 
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686 C. D. MEYER AND G. W. STEWART 

Since UUH is the orthogonal projector onto R(A - Al) = R(A - AI)#, it follows that 

(4.5) UUH(A-A I)#U = (A + A I)#U. 

Hence 

{UH(A-kAI)#U}H{UH(A-kAI)#U} = UH(A-kAI)#H(A-kAI)#U 

so that 

IIUH(A-AlI)Ul| = II(A-AI)#UlI || II(A-AkI)IIJ1 

This, together with (4.4), produces the right-hand inequality in (4.3). The left-hand 
inequality in (4.3) is produced by using (4.4) and (4.5) to observe that 

1= (C-AI)(C-AI)-' 

= UH(A - AI)UUH(A-kAI)#U 

= UH(A -AI)(A - AI)#U. 

Use (4.2) to conclude that 

1 = IIUH(A-Al)(A-Al)#UlI 

= JI(A-AI)(A-AI)#UlI 

_ IIA-AII ISep1 (A, C). 

The inequalities of Theorem 3 may be strict. For example, if 

then for A =0, C= [1] and 

Sep-'(O, C) = 1 < IIA#II N2. 

5. Linear perturbations. Of particular interest is the situation where A(z) is linear 
in z. That is, let Ao and E be constant matrices and let A(z) = Ao+ zE have a simple 
eigenvalue A (z) with corresponding eigenvector x(z) on some neighborhood about the 
origin. The strategy of the traditional approach to perturbational analysis given in 
Wilkinson [1965] is to examine the first order term in a Taylor expansion of x(z) about 
z = 0. The analysis in Wilkinson requires Ao to be diagonalizable and hinges upon the 
expansion 

n-i H 

(5.1) x(z)=x+ +Z 3Yi Exo x.+O(z2) 
1(AkO-Aki)si ' 

where {A0, A1, * , An-1} are the eigenvalues of Ao corresponding to a complete set of 
normalized right-hand and left-hand eigenvectors 

{x0, xl, , xn-.1} and {Yo,Yi, , Yn-1} 

respectively, and where si = yNx. In addition to the separation of Ao from the other 
eigenvalues, (5.1) suggests that the sensitivity of xo also depends on the si (i $ 0) terms. 
However, as Wilkinson points out, the existence of small si terms does not imply 
sensitivity in xo (see Example 2). For these reasons, the expansion (5. 1) can be somewhat 
intractable for the purpose of analyzing eigenvector sensitivity. 
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DERIVATIVES OF EIGENVECTORS 687 

On the other hand, the expressions in Theorem 2 do not involve the si's nor are 
they based on the assumption that Ao is diagonalizable. Using (3.8) with z0= 0, we 
may write 

(5.2) x(z) = xo + zx (O) + O(Z2) = xo + z{(x4'GoExo)I-GoE}xo +O(Z2) 

where Ao = A (0), xo = x(0), and Go = (Ao - Ako)#. It is clear from (5.2) that the term Go 
is the predominant factor in eigenvector sensitivity. 

Example 1. Consider the matrix 

1 0 0 ... 0 
0 2 

-1. -1 
AO= 0 0 2 

0 0 0 2 nxn 

and analyze the condition of the eigenvector 

associated with the eigenvalue A0 = 1 for large values of n. The traditional approach 
using (5.1) is not applicable because Ao is deficient in eigenvectors. However, the 
results of this paper make it absolutely clear that xo is terribly ill conditioned, in spite 
of the fact that A0 = 1 is well separated from the other eigenvalues. To see this, simply 
observe that Go = (Ao - A01)# is given by 

G0 0 0 0 .. ) 

G 0 T-') 

where T is the matrix 

1-1 -1 -1 
T=0 1 -1 * 1. 

It is evident that IIGoII becomes huge an n grows and therefore xo becomes violently 
ill conditioned as n grows. To corroborate this fact and to appreciate just how sensitive 
xo is, consider the matrix A(z) = Ao+ zEn1 where 

En = . 
. 

. . 

i 0 ... 0/ 

For all z, the matrix A(z) has exactly the same eigenvalues as Ao but the normalized 
eigenvector x(z) of A(z) associated with A (z) = 1 is extremely sensitive near z = 0. To 
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688 C. D. MEYER AND G. W. STEWART 

see this, simply verify that x(z) is given exactly by 

1~ ~ _2 

-z20 
-z 

For example, if n = 50 and z = 10-8, then the first component in x(10-8) is 

xI(10-8) = 6.15 x 10-7. 
This means that x(10-8) is nearly orthogonal to x(O). If direction is neglected, then 
two eigenvectors of unit norm have maximal separation when they are orthogonal. 
Therefore, for sufficiently large n and for z near 0, the eigenvector x(z) given above 
is about as sensitive as any eigenvector can be. 

Example 2. The following matrix is essentially that given on page 85 in Wilkinson 
[1965]: 

2 0 0 
A=A(z)= 0 1 1 

O O l+z 

For z #0, 

ISII = IS21 = Z/(o + Z2)I/2 

are both small when z is small. However, the eigenvector x(z) associated with A (z) = 2 
cannot be sensitive near z = 0. This is clear from the point of view of this paper because 

0 0 0 
(A-21)# = O -1 -1/(1-z) 

0 O -1/(1-Z) 

has no large entries near z = 0. 

6. The effect of perturbing isolated entries in A. An important special case which 
is particularly revealing is the situation in which only a single entry of A is perturbed. 
Depending on the entry chosen, the effect of a small perturbation on an eigenvector 
can be negligible or it can be tremendous (e.g., see Example 3). It is therefore desirable 
to be able to predict which positions in A can be slightly perturbed without greatly 
affecting an associated eigenvector and which positions in A, when perturbed, sig- 
nificantly alter the eigenvector. The analysis is easily accomplished by means of a 
simple linear perturbation. 

As before, let Ao be a constant matrix with a simple eigenvalue Ao and a correspond- 
ing eigenvector xo which has unit length. Let 

A(z) = A>+ zEij = A>+ zeeJT. 

This represents a perturbation to only the (i, j)-entry of Ao. Let x(z) be a unit eigenvector 
of A(z) associated with A (z) such that x(O) = xo and A (0) = AO. Since A'(0) = ejeT, it 
follows that A'(O)xo = eixoj where xo, is the jth component of xo. Statement (3.8) of 
Theorem 2 reduces to 

(6.1) x'(O) = Xo{xH(AO -A01) wxo - (AO -A0I) w} 
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where (AO -AOI) # is the ith column of (AO -kAoI)#. Furthermore, it follows from the 
rest of Theorem 2 that 

(6.2) || x'(0) II = Ixoj sin O,f II (Ao- AoI) ' || 

where Oi is the angle between xo and (Ao- A01) *i. Moreover, it is now easy to show that 

(6.3) |AK I ||<JX'(O)II ' |(AO-AkI)0*II 

where wo1 is the ith component of a unit length left-hand eigenvector, w0, of Ao with 
associated eigenvalue 1to $ Ao. The observations (6.1)-(6.3) justify the following 
statement. 

THEOREM 4. For a constant matrix A, let x be an eigenvector of unit length associated 
with a simple eigenvalue A. The sensitivity of x to perturbations in the ith row of A is 
governed only by the entries of the ith column of (A - AI)# in conjunction with the entries 
of x itself. 

The following example illustrates the utility of the preceding results. 
Example 3. Consider the matrix of Example 1. 

I 0 0 ... O 
0 2 -1 -1 

AO= 0 0 2 -1 

0 0 0 ***2 Inxn 

The vector 

O 

is an eigenvector for Ao corresponding to the simple eigenvalue AO= 1. By examining 
the matrix 

00 0 0... ~ 
0 1 1 2 *** 2 

(A0-I) - 0 0 1 1 . .. 2 

it is clear that the nth column of (AO-I)# has the greatest magnitude. Hence our 
results predict that the eigenvector xo should exhibit maximum sensitivity when the 
entries of the nth row of Ao are perturbed. In fact, more can be said. Suppose that the 
(i,j)th entry of Ao is perturbed and let 

A(z) = AO + zEij 
be the resulting perturbed matrix with associated unit eigenvector x(z). Since xoH(A0 - 

I)#= 0, (6.1) reduces to 

(6.4) X'(0) = -x0, (A0 - I) O*i. 

Since 11(AO - I) ? i becomes progressively smaller as i decreases from n to 1, (6.4) shows 
that ffx'(0) 11 is maximal for i = n, j = 1, and becomes progressively smaller as i decreases 
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from n to 1 with j fixed at j = 1. Furthermore, x'(0) = 0 for j > 1. Therefore, we may 
conclude that xo is most sensitive to a perturbation in the (n, 1) entry of AO and 
progressively less sensitive in positions (n-1, 1), (n -2, 1); - - *, (1, 1). 

Because x'(0) = 0 whenever j > 1, xo should be unaffected by perturbations to the 
(i,j)-entries for j> 1. Indeed, this is easily verified to be true by noting that Ao is 
triangular. In Example 1 it was demonstrated just how terribly sensitive xo is to a 
perturbation of the (n, 1)-entry of AO. 

7. An application to Markov chains. An immediate application of our results 
concerns the problem of computing the derivatives of the stationary probabilities of 
an ergodic Markov chain. For this application, z is considered to be a real variable 
and P(z) is an irreducible row stochastic matrix for each z in some open interval. It 
follows that for each z, A (z) = 1 is a simple eigenvalue for P(z) and that 

e=(. 

is always a corresponding right-hand eigenvector. For each z, the stationary distribution 
'Iixn(z) associated with P(z) is the left-hand eigenvector corresponding to A(z) = 1 
which satisfies the condition I(z)e = 1. To compute the derivatives of the stationary 
probabilities, use (3.7) of Corollary 2 with A replaced by pT, y replaced by e, and x 
replaced by ATT. This yields 

(7.1 ) Ir' =-,P'(P -1)# = P'( - P)# 

and 

(7.1') 
for all z in the interval under question. These are the results of Golub and Meyer 
[1986]. Equation (7.1') shows that the sensitivity of the ith stationary probability is 
dependent only on the magnitude of the entries in the ith column of (I-P)# in 
conjunction with the components of a itself. In fact, it was (7.1) that motivated the 
results of this paper. 

In the analysis of a Markov chain, it is particularly important to predict the effect 
of a perturbation to a single pair of entries in a certain row of the transition matrix. 
That is, suppose that the (ij)-entry increases by E and the (i, r)-entry decreases by e 
while all other transition probabilities remain fixed. How is 'a affected? To analyze 
the situation, let PO be a constant transition matrix with stationary distribution 'n and 
consider the linear perturbation 

P = P(z) = Po + zei(ej - er)T 

for z E (-e, e). Thus P' = e1(ej - er)T and hence (7.1) yields 

(7.2) IT'(Z) = iT(Z){(I -P)J - (I-P)r-}b 
If wom denotes the ith component of wo, then (7.2) implies that 

ZT'(?) = 1lTO{(I- PO)J-r(I -PO)r 
and 

Ik'(?)= 'in {(I - Po)jk - (I -Po)rk 

These observations justify the following statement. 
THEOREM 5. The effect on the kth stationary probability of slightly increasing pij by 

the same amount that Pir is decreased is governed strictly by the difference of the (j, k)- 
and (r, k) - entries of (I - P)# in conjunction with the ith stationary probability. 
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