LSl vs Link Analysis
(A Survey)

C.D. Meyer and A.N. Langville

G

1/23/2003

Department of Mathematics
North Carolina University
Raleigh, NC




Outline

e Background & History



Outline
e Background & History

e \ector Space Approach



Outline
e Background & History

e \ector Space Approach

e Link Analysis Approach



Outline
Background & History

Vector Space Approach
Link Analysis Approach

Hybrid Approachs



Background

Goal

e |dentify documents that best match users query



Background

Goal

e |dentify documents that best match users query

Measures

#relevant docs retrieved

o = ' '
Recall #docs 1n collection

(max # useful docs)

e Precision = #relevant docs retrieved (min # yseless docs)
#docs retrieved




Background

Goal

e |dentify documents that best match users query

Measures

#relevant docs retrieved
#docs 1n collection

e Recall = (max # useful docs)

e Precision = #relevant docs retrieved (min # yseless docs)
#docs retrieved

Do it FAST!
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SMART

(System for the Mechanical Analysis and Retrieval of Text)

Harvard 1962 — 1965
e IBM 7094 & IBM 360

Gerard Salton
e Implemented at Cornell (1965 — 1970)

e Based on matrix methods
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Start With Dictionary of Terms

e Single words — or short phrases (e.g., landing gear)

Index Each Document (by human or by computer)
o Count f;; = # times term : appears in document j

Term—Document Matrix

TERM 1

TERM 2

TERM m

Features
e A>0

Doc 1 Doc 2

( fll f12
f_21 f_zz
\ foi f2

A can be really big

[
e A is sparse — but otherwise unstructured
e A contains a lot of uncertainty

DocC n

fin

Foon )

::/\nzxn
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Query Matching

Query Vector

1 if Term ¢ Is requested

e 9" =(q1,¢2,+--,qm) Where q@':{o if not

How Close is the Query to Each Document?

e I.e., how close is g to each column A;?

5 " la—Adll < llg — Az but 6, < 6,
TA_

Use §; = cos 6, = q A

all [|A]l

Rank documents by size of §;

Return Document z to user when §; > tol
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Uncertainties in A

Ambiguity in Vocabulary
e e.g., A plane could be
— A flat geometrical object
— A woodworking tool
— A Boeing product

Variation in Writing Style
e No two authors write the same way
— One author may write car and laptop
— Another author may write automobile and portable

Variation in Indexing Conventions
e NO two people index documents the same way
e Computer indexing Is inexact and can be unpredictable
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Theory vs Practice

In Theory — it's easy
e Weight terms and normalize cols — Make ||A;|| =1
e For each new query, weight and normalize — Make ||q|| =1
e Compute §; = cosf; = (q' A); to return the most relevant docs

In Practice — it’'s not so easy
e Suppose query = gas
e D, indexed by gas, car, tire (found)
e D, indexed automobile, fuel, and tire (missed)

Somehow Reveal Latent Connections
e Find Dy by making the connection through tire
e Do it FAST!
— Data compression
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e Reveal hidden patterns
e Compress the data
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New Basis B = {Wo,Wl,...,Wn_l}
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-1 —9 L. t=0,1/n,2/n,...
1 W w" w o

o Wi+ W,_,. =cCoS2rkt
O Wk—Wn_k:iSiHZWkt (0<k<n)
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Recall
o X =) yWi =Wy
o y=WIx

W1 = (4/n)W = Discrete Fourier Transform

1Yo 1 1 1 .- 1
mo| L1 @ e e
w =21 e e e e
. no.oo . " .
| Yn—1 _ _1 é-n—l fn—2 f 1 LLn-1

S — e—27r|/n — w
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e Only 4 are significant. ygg =vy432 =1 and y5o = —2i = —yue2
e X = Z YW = 1Wsg + 1Wygo — 21Wsg + 21Wygo + Z Ejo

e Small components (noise) are nondirectional
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X => YWy = 1Wgo + 1Wy3a — 2iW50 + 2iWyea + > ;W

X = (Wgo + Wazz) — 2i(Ws0 — Waes)

n =912

X = (Wso + Wy—g0) — 2i(Ws0 — W,,_50) Compressed (512— 4)
— Wi+ W, _ = coS 27kt
— W, — W, =15SsIn 27kt

X = c0s 2780t + 2 sin 2750t Cleaned

X = Cc0S 2780t + 2 sin 2750t + noise
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Cleaned & Compressed Data

X=X — noise = (Wgo + W432) — 2i(W50 — W462)

3

2 - . .

1 .

| | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

coS 2780t + 2 sin 2750t
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The DFT Game

Matrix—Vector Product
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Simple in Theory, But ---
e Must do it FAST!

Need For Speed — Matrix Factorizations — FFT

In/2 Dn/2 1 f
® Fn - Bn(|2 & Fn/z)Pn Bn - Dn/2 - 52.

In/2 _Dn/2

e FFT changes n? flop requirement into (n/2)log,n

“THE MOST VALUABLE NUMERICAL ALGORITHM IN OUR LIFETIME.”

—G. STRANG, BULLETIN OF THE AMS, APRIL, 1993.
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Almost the Same Problem
e Reveal hidden patterns & evaluate q’A fast (clean & compress)

Data iIs Now the Term-Doc Matrix in Standard Coordinates

—_ — T
o A= Z CLZ']'EZ']' Eij = eiej
1,]

Change Basis to B ={Z;, Z5, ...} That Can Squeeze & Clean

e A=) 07 (Fourier Expansion)
e Bo.n. = o;,=(Z;|A)=amount of A in direction of Z;
Matrix Factorizations: A =URV" =3 rjuvi =3 riZ;;

e Represent data with as few directions Z; as possible

e SVD = R= { } = A=)_,0Z, (ZZj)= {(1) ;zj



Same As Before

Assume Nondirectional Uncertainty



Same As Before

Assume Nondirectional Uncertainty

e Drop small o;,'s — replace A with A = Z’? L 0L

1=



Same As Before

Assume Nondirectional Uncertainty

e Drop small o;,'s — replace A with A = Z’? L 0L

1=

e Lose only small part of relevance



Same As Before

Assume Nondirectional Uncertainty

e Drop small o;,'s — replace A with A = Z’? L 0L

1=

e Lose only small part of relevance

e Lose larger proportion of uncertainty



Same As Before

Assume Nondirectional Uncertainty
e Drop small o;'s — replace A with A = S 0iZ;

e Lose only small part of relevance

e Lose larger proportion of uncertainty

New Query Matching Strategy



Same As Before

Assume Nondirectional Uncertainty

e Drop small o;,'s — replace A with A = Z’? L 0L

1=

e Lose only small part of relevance

e Lose larger proportion of uncertainty

New Query Matching Strategy
e Normalize

— g < q/|lq|



Same As Before

Assume Nondirectional Uncertainty

e Drop small o;,'s — replace A with A = Z’? L 0L

2=
e Lose only small part of relevance
e Lose larger proportion of uncertainty

New Query Matching Strategy
e Normalize

— g < q/|lq|

A k T — Xk 5T
— A« Zz’ZI ag;u;V; D = Zi:1 o;u;V;



Same As Before

Assume Nondirectional Uncertainty

e Drop small o;,'s — replace A with A = Zle 0;Z;
e Lose only small part of relevance
e Lose larger proportion of uncertainty
New Query Matching Strategy
e Normalize

— g <q/llq
— A «— Z,lle O'Z'UZ'VZTD = Zle O-iuinT
e Compare query to each document

T qT'& - Zf:l UZ(unZ)vfzr = (517 527 ° ooy 5?%)
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Pros & Cons

Advantages
e Compression
— A replaced with a few sing values & vectors (but dense)
— They are determined & normalized only once
e SPEED!
— Each query requires only a few inner products

" e N
qTAan - Zi:]_ O-i(uni)VzT
e Latent semantic associations are made

— Relevant docs not found by direct matching show up
— Latent Semantic Indexing (LSI)

Disadvantages
e Adding & deleting docs requires updating & downdating SVD
e Determining optimal £ is not easy (empirical tuning required)
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Other Fourier Expansions ??

Truncated URV Factorizations

DFT — FFT
e No compression — no oscillatory components
1 1 1 0]
1 1 11 1 -1 o0
Haar Transform Hs = [1 _1] H, = 1 1 0 X
1 -1 0 -1
e H,=(la ®H,.)P, [Hn/z | ] = H, X Is Fast! (if n=27)
n/2
e Factor A = HmBHg . Zi,j ﬂijhz-h]T ( h's only use -1, 0, 1)
— More than a few 3;;'s may be needed
— Needs padding if m or n not a power of 2
Semidiscrete Decomposition (T. KoLpA AND D. O’LEARY, 1998)

o Approximate A ~ 37 a;x;y; X; andy; only use —1, 0, or 1

Other Wavelet Transforms?
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Link Analysis (Think Web)

How To Take Advantage of Link Structure ?

Indexing and Ranking

e Still must index key terms on each page
— Robots crawl the web — software does indexing

e Inverted file structure
— Termy — B, Pj, ...
— Termgs — P, P, ...

e Attach an importance rating to P, P;, P, P, ...

e Direct query matching

— Q= Termy, Terms, ... produces P, P;, P, P, ...

e Return P, P;, P, P, ... to user in order of importance
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How To Measure " Importance”

Hubs & Authorities (Jon Kleinberg 1998)

e Good hub pages point to good authority pages

e Good authorities are pointed to by good hubs

HITS Algorithm
e For each query a “neighborhood graph” N is built
e Hub and authority scores for nodes in N are computed
— Elgenvector computation
e Works, but requires new graph for each query

e Similar ideas in TEOMA.com
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Google’s Idea

PageRank (Sergey Brin & Lawrence Page 1998)
e Your page P has some rank r(P)

e Adjust »(P) higher or lower depending on ranks of pages
that pointto P

e Importance is not number of in-links or out-links
— One linkto P from Yahoo! is important

— Many links to P from me is not

e But if Yahoo! points to many places, the value of the link to P
IS diluted
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In Matrix Notation
After Step j

o w1 = [ri(Py), ri(Pa), -+, (L))

1/|P| 1If e '
o m,, =m P where p;;= /1B i
J+1 = J :
0 otherwise
o PageRank = lim 7} =«" (provided limit exists)
j—00
It’'s A Markov Chain
e P=p;| is a stochastic matrix (row sums = 1)

e Each =] (and «") is a probability vector (Z ri(P) = 1)

?

o 71']T+1 TP Is random walk on the graph defined by links
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Random Surfer

Web Surfer Randomly Clicks On Links (Back button not a link)
e Long-run proportion of time on page P, IS

Problems

e Dead end page (nothing to click on)
— No convergence!

e Could get trapped into a cycle (P, — P; — P)
— No convergence!

Convergence
e Markov chain must be irreducible and aperiodic

Bored Surfer Enters Random URL
e Replace P by P=aP+ (1 —a)E where ¢;=1/n a~ .85
— Different E's and «o’s allow customization & speedup
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Computing 7*

World’s Largest Eigenvector Problem (c. moler)

e Solve w!l = #!P (stationary distribution vector)
® 7TT(| — P) =0 (too big for direct solves)
e Start with 7TT =e/n and iterate 7TJT+1 TP (power method)

Updating Is A Big Problem

e Link structure of web is extremely dynamic
— Links on CNN point to different pages every day (hour)
— Links are added and deleted every sec (milli-sec?)

e Google says every 3 to 4 weeks just start from scratch

e Old results don't help to restart (even if size doesn’t change)
— Cutoff phenomenon in random walks (P. Diaconis, 1996)
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Goals

e Do better job using link structure to reveal hidden connections

e Improve updating
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The Idea

e Use link structure to define measure of page (doc) contiguity

— What's the “distance” from P; to P; ?
— Link structure = 0;; Z 9

1. Compute the distance ¢;; from P, to P; for all 7, 5

— Keep only those for which 57;]- <T (provides sparsity)
(P, — P, Pj,...
— File structure: { P - Py, B,y ...

\

2. Match query most relevant page(s) P
— LSI — Link analysis — You pick

3. Return P together with those P — B, P;, P, B, . ..
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Distance

What's the “distance” from D; to D; ?

Based only on term frequencies
e LSl uses 6;; = cosh;; =4, { ’ !

No link structure

Directed Link Structure — Nonsymmetric Metric





