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SMART

(System for the Mechanical Analysis and Retrieval of Text)

Harvard 1962 – 1965

• IBM 7094 & IBM 360

Gerard Salton

• Implemented at Cornell (1965 – 1970)

• Based on matrix methods
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• Count fij = # times term i appears in document j
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Doc 1 Doc 2 . . . Doc n

Term 1 f11 f12
. . . f1n

Term 2 f21 f22
. . . f2n...
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. . .
...

Term m fm1 fm2
. . . fmn

 = Am×n

Features
• A ≥ 0
• A can be really big
• A is sparse — but otherwise unstructured
• A contains a lot of uncertainty
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Query Vector

• qT = (q1, q2, . . ., qm) where qi =
{

1 if Term i is requested
0 if not

How Close is the Query to Each Document?

• i.e., how close is q to each column Ai?

θ

1θ

2
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A2

A3

q ‖q − A1‖ < ‖q − A2‖ but θ2 < θ1

Use δi = cos θi =
qTAi

‖q‖ ‖Ai‖

Rank documents by size of δi

Return Document i to user when δi ≥ tol
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Term Weighting
A Defect

• If the term bank occurs once in Doc 1 but twice in Doc 2, and
if ‖A1‖ ≈ ‖A2‖, then a query containing only bank produces
δ2 ≈ 2δ1 (i.e., Doc 2 is rated twice as relevant as Doc 1).

To Compensate

• Set aij = log(1 + fij) (other weights also possible)

Query Weights

• Terms Boeing and airplanes not equally important in queries

• Importance of Term i tends to be inversely proportional to
νi = # Docs containing Term i

To Compensate

• Set qi =
{

log(n/νi) if νi �= 0
0 if νi = 0

(other weights also possible)
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Uncertainties in A
Ambiguity in Vocabulary

• e.g., A plane could be

— A flat geometrical object

— A woodworking tool

— A Boeing product

Variation in Writing Style

• No two authors write the same way

— One author may write car and laptop

— Another author may write automobile and portable

Variation in Indexing Conventions

• No two people index documents the same way

• Computer indexing is inexact and can be unpredictable
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— Data compression
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• Reveal hidden patterns
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Recall

• x =
∑

ykWk = Wy

• y = W−1x

W−1 = (4/n)W = Discrete Fourier Transform
y0

y1

y2...
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Drop Small Coordinates

• x =
∑

ykWk = 1W80 + 1W432 − 2iW50 + 2iW462 +
∑

εjWj

• x̃ = (W80 + W432) − 2i(W50 − W462)

• n = 512

• x̃ = (W80 + Wn−80) − 2i(W50 − Wn−50) Compressed (512→4)

— Wk + Wn−k = cos 2πkt

— Wk − Wn−k = i sin 2πkt

• x̃ = cos 2π80t + 2 sin 2π50t Cleaned

• x = cos 2π80t + 2 sin 2π50t + noise



Original Data

x =


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x2...
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Cleaned & Compressed Data

x̃ = x − noise = (W80 + W432) − 2i(W50 − W462)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-3

-2

-1

0

1

2

3

cos 2π80t + 2 sin 2π50t
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y = 2
n


1 1 1 .. . 1
1 ξ ξ2 . . . ξn−1

1 ξ2 ξ4 . . . ξn−2

...
...
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. . .

...
1 ξn−1 ξn−2 . . . ξ




x0

x1

x2...
xn−1

 ξ = e−2πi/n

Simple in Theory, But . . .

• Must do it FAST!

Need For Speed =⇒ Matrix Factorizations =⇒ FFT

• Fn = Bn(I2 ⊗ Fn/2)Pn Bn =
[

In/2 Dn/2

In/2 −Dn/2

]
Dn/2 =

[
1 ξ

ξ2...

]
• FFT changes n2 flop requirement into (n/2) log2 n

“The most valuable numerical algorithm in our lifetime.”

—G. Strang, Bulletin of the AMS, April, 1993.
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Back To IR
Almost the Same Problem

• Reveal hidden patterns & evaluate qTA fast (clean & compress)

Data is Now the Term-Doc Matrix in Standard Coordinates

• A =
∑
i,j

aijEij Eij = eieT
j

Change Basis to B = {Z1, Z2, . . .} That Can Squeeze & Clean

• A =
∑

σiZi (Fourier Expansion)

• B o.n. ⇒ σi = 〈Zi A〉 = amount of A in direction of Zi

Matrix Factorizations: A = URVT =
∑

rijuivT
j =

∑
rijZij

• Represent data with as few directions Zi as possible

• SVD ⇒ R =

[
σ1...

σr
0...

0

]
⇒ A =

∑r
i=1 σiZi, 〈Zi Zj〉 =

{
1 i=j

0 i�=j
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Same As Before
Assume Nondirectional Uncertainty

• Drop small σi’s — replace A with Ã =
∑k

i=1 σiZi

• Lose only small part of relevance

• Lose larger proportion of uncertainty

New Query Matching Strategy

• Normalize

— q ← q/‖q‖

— Ã ←
∑k

i=1 σiuivT
i D =

∑k
i=1 σiuiṽT

i

• Compare query to each document

— qT Ã =
∑k

i=1 σi(qTui)ṽT
i = (δ1, δ2, . . ., δn)
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Pros & Cons
Advantages

• Compression

— A replaced with a few sing values & vectors (but dense)

— They are determined & normalized only once

• SPEED!

— Each query requires only a few inner products

qT Ãm×n =
∑k

i=1 σi(qTui)ṽT
i

• Latent semantic associations are made

— Relevant docs not found by direct matching show up

— Latent Semantic Indexing (LSI)

Disadvantages

• Adding & deleting docs requires updating & downdating SVD

• Determining optimal k is not easy (empirical tuning required)
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DFT — FFT
• No compression — no oscillatory components

Haar Transform H2 =
[
1 1
1 −1

]
H4 =


1 1 1 0
1 1 −1 0
1 −1 0 1
1 −1 0 −1


• Hn = (I2 ⊗ Hn/2)Pn

[
Hn/2

In/2

]
⇒ Hnx is Fast! (if n=2p)

• Factor A = HmBHT
n =

∑
i,j βijhihT

j ( h’s only use -1, 0, 1 )

— More than a few βij’s may be needed
— Needs padding if m or n not a power of 2

Semidiscrete Decomposition (T. Kolda and D. O’Leary, 1998)

• Approximate A ≈
∑k

i=1 αixiyj xi and yj only use −1, 0, or 1

Other Wavelet Transforms?
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Link Analysis (Think Web)
How To Take Advantage of Link Structure ?

Indexing and Ranking

• Still must index key terms on each page
— Robots crawl the web — software does indexing

• Inverted file structure
— Term1 → Pi, Pj, . . .

— Term2 → Pk, Pl, . . ....

• Attach an importance rating to Pi, Pj, Pk, Pl, . . .

• Direct query matching
— Q = Term1, T erm2, . . . produces Pi, Pj, Pk, Pl, . . .

• Return Pi, Pj, Pk, Pl, . . . to user in order of importance



How To Measure “Importance”



How To Measure “Importance”

Hubs & Authorities (Jon Kleinberg 1998)

• Good hub pages point to good authority pages

• Good authorities are pointed to by good hubs



How To Measure “Importance”

Hubs & Authorities (Jon Kleinberg 1998)

• Good hub pages point to good authority pages

• Good authorities are pointed to by good hubs

HITS Algorithm

• For each query a “neighborhood graph” N is built



How To Measure “Importance”

Hubs & Authorities (Jon Kleinberg 1998)

• Good hub pages point to good authority pages

• Good authorities are pointed to by good hubs

HITS Algorithm

• For each query a “neighborhood graph” N is built

• Hub and authority scores for nodes in N are computed

— Eigenvector computation



How To Measure “Importance”

Hubs & Authorities (Jon Kleinberg 1998)

• Good hub pages point to good authority pages

• Good authorities are pointed to by good hubs

HITS Algorithm

• For each query a “neighborhood graph” N is built

• Hub and authority scores for nodes in N are computed

— Eigenvector computation

• Works, but requires new graph for each query



How To Measure “Importance”

Hubs & Authorities (Jon Kleinberg 1998)

• Good hub pages point to good authority pages

• Good authorities are pointed to by good hubs

HITS Algorithm

• For each query a “neighborhood graph” N is built

• Hub and authority scores for nodes in N are computed

— Eigenvector computation

• Works, but requires new graph for each query

• Similar ideas in TEOMA.com



Google’s Idea

PageRank (Sergey Brin & Lawrence Page 1998)



Google’s Idea

PageRank (Sergey Brin & Lawrence Page 1998)

• Your page P has some rank r(P )



Google’s Idea

PageRank (Sergey Brin & Lawrence Page 1998)

• Your page P has some rank r(P )

• Adjust r(P ) higher or lower depending on ranks of pages
that point to P



Google’s Idea

PageRank (Sergey Brin & Lawrence Page 1998)

• Your page P has some rank r(P )

• Adjust r(P ) higher or lower depending on ranks of pages
that point to P

• Importance is not number of in-links or out-links



Google’s Idea

PageRank (Sergey Brin & Lawrence Page 1998)

• Your page P has some rank r(P )

• Adjust r(P ) higher or lower depending on ranks of pages
that point to P

• Importance is not number of in-links or out-links

— One link to P from Yahoo! is important

— Many links to P from me is not



Google’s Idea

PageRank (Sergey Brin & Lawrence Page 1998)

• Your page P has some rank r(P )

• Adjust r(P ) higher or lower depending on ranks of pages
that point to P

• Importance is not number of in-links or out-links

— One link to P from Yahoo! is important

— Many links to P from me is not

• But if Yahoo! points to many places, the value of the link to P
is diluted
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PageRank
The Definition

• r(P ) =
∑
P∈BP

r(P )
|P |

— BP = {all pages pointing to P}
— |P | = number of out links from P

Successive Refinement

• Start with r0(Pi) = 1/n for all pages P1, P2, . . ., Pn

• Iteratively refine rankings for each page

— r1(Pi) =
∑

P∈BPi

r0(P )
|P |

— r2(Pi) =
∑

P∈BPi

r1(P )
|P |

. . .

— rj+1(Pi) =
∑

P∈BPi

rj(P )
|P |
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In Matrix Notation
After Step j

• πT
j =

[
rj(P1), rj(P2), . . ., rj(Pn)

]
• πT

j+1 = πT
j P where pij =

{
1/|Pi| if i → j

0 otherwise

• PageRank = lim
j→∞

πT
j = πT (provided limit exists)

It’s A Markov Chain

• P =
[
pij

]
is a stochastic matrix (row sums = 1)

• Each πT
j (and πT ) is a probability vector

(∑
i

rj(Pi) = 1

)

• πT
j+1 = πT

j P is random walk on the graph defined by links
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Random Surfer

Web Surfer Randomly Clicks On Links (Back button not a link)

• Long-run proportion of time on page Pi is πi

Problems

• Dead end page (nothing to click on)
— No convergence!

• Could get trapped into a cycle (Pi → Pj → Pi)
— No convergence!

Convergence

• Markov chain must be irreducible and aperiodic

Bored Surfer Enters Random URL

• Replace P by P̃ = αP + (1− α)E where eij = 1/n α ≈ .85

— Different E’s and α’s allow customization & speedup
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Computing πT

World’s Largest Eigenvector Problem (C. Moler)

• Solve πT = πTP (stationary distribution vector)

• πT (I − P) = 0 (too big for direct solves)

• Start with πT
0 = e/n and iterate πT

j+1 = πT
j P (power method)

Updating Is A Big Problem

• Link structure of web is extremely dynamic

— Links on CNN point to different pages every day (hour)

— Links are added and deleted every sec (milli-sec?)

• Google says every 3 to 4 weeks just start from scratch

• Old results don’t help to restart (even if size doesn’t change)

— Cutoff phenomenon in random walks (P. Diaconis, 1996)
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FEATURES LSI LINK ANALYSIS

Reveals Hidden Patterns A C

Speed B− A+

Easy To Update D F (?↑?)

Scales Up D− A

Takes Advantage of Link Structure F A+

Goals

• Do better job using link structure to reveal hidden connections

• Improve updating
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Hybrid Approach

The Idea

• Use link structure to define measure of page (doc) contiguity

— What’s the “distance” from Pi to Pj ?
— Link structure =⇒ δij �= δji

1. Compute the distance δij from Pi to Pj for all i, j

— Keep only those for which δij < τ (provides sparsity)

— File structure:


P1 → Pi, Pj, . . .
P2 → Pk, Pl, . . ....

2. Match query most relevant page(s) P
— LSI — Link analysis — You pick

3. Return P together with those P → Pi, Pj, Pk, Pl, . . .
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Distance
What’s the “distance” from Di to Dj ?

• LSI uses δij = cos θij = δji

{
Based only on term frequencies

No link structure

Directed Link Structure =⇒ Nonsymmetric Metric




