
LSI vs LinkAnalysis
(ASurvey)

C. D. Meyer and A. N. Langville

Department of Mathematics
North Carolina University
Raleigh, NC

1/23/2003

Outline
• Background & History

Outline
• Background & History

• Vector Space Approach

Outline
• Background & History

• Vector Space Approach

• Link Analysis Approach

Outline
• Background & History

• Vector Space Approach

• Link Analysis Approach

• Hybrid Approachs

Background

Goal

• Identify documents that best match users query

Background

Goal

• Identify documents that best match users query

Measures

• Recall = #relevant docs retrieved
#docs in collection

(max # useful docs)

• Precision = #relevant docs retrieved
#docs retrieved

(min # useless docs)

Background

Goal

• Identify documents that best match users query

Measures

• Recall = #relevant docs retrieved
#docs in collection

(max # useful docs)

• Precision = #relevant docs retrieved
#docs retrieved

(min # useless docs)

Do it FAST!

SMART

(System for the Mechanical Analysis and Retrieval of Text)

SMART

(System for the Mechanical Analysis and Retrieval of Text)

Harvard 1962 – 1965

• IBM 7094 & IBM 360

SMART

(System for the Mechanical Analysis and Retrieval of Text)

Harvard 1962 – 1965

• IBM 7094 & IBM 360

Gerard Salton

• Implemented at Cornell (1965 – 1970)

SMART

(System for the Mechanical Analysis and Retrieval of Text)

Harvard 1962 – 1965

• IBM 7094 & IBM 360

Gerard Salton

• Implemented at Cornell (1965 – 1970)

• Based on matrix methods

Term–Document Matrix
Start With Dictionary of Terms

• Single words — or short phrases (e.g., landing gear)

Term–Document Matrix
Start With Dictionary of Terms

• Single words — or short phrases (e.g., landing gear)

Index Each Document (by human or by computer)
• Count fij = # times term i appears in document j

Term–Document Matrix
Start With Dictionary of Terms

• Single words — or short phrases (e.g., landing gear)

Index Each Document (by human or by computer)
• Count fij = # times term i appears in document j

Term–Document Matrix
Doc 1 Doc 2 . . . Doc n

Term 1 f11 f12
. . . f1n

Term 2 f21 f22
. . . f2n...

...
...

. . .
...

Term m fm1 fm2
. . . fmn

 = Am×n

Term–Document Matrix
Start With Dictionary of Terms

• Single words — or short phrases (e.g., landing gear)

Index Each Document (by human or by computer)
• Count fij = # times term i appears in document j

Term–Document Matrix
Doc 1 Doc 2 . . . Doc n

Term 1 f11 f12
. . . f1n

Term 2 f21 f22
. . . f2n...

...
...

. . .
...

Term m fm1 fm2
. . . fmn

 = Am×n

Features
• A ≥ 0

Term–Document Matrix
Start With Dictionary of Terms

• Single words — or short phrases (e.g., landing gear)

Index Each Document (by human or by computer)
• Count fij = # times term i appears in document j

Term–Document Matrix
Doc 1 Doc 2 . . . Doc n

Term 1 f11 f12
. . . f1n

Term 2 f21 f22
. . . f2n...

...
...

. . .
...

Term m fm1 fm2
. . . fmn

 = Am×n

Features
• A ≥ 0
• A can be really big

Term–Document Matrix
Start With Dictionary of Terms

• Single words — or short phrases (e.g., landing gear)

Index Each Document (by human or by computer)
• Count fij = # times term i appears in document j

Term–Document Matrix
Doc 1 Doc 2 . . . Doc n

Term 1 f11 f12
. . . f1n

Term 2 f21 f22
. . . f2n...

...
...

. . .
...

Term m fm1 fm2
. . . fmn

 = Am×n

Features
• A ≥ 0
• A can be really big
• A is sparse — but otherwise unstructured

Term–Document Matrix
Start With Dictionary of Terms

• Single words — or short phrases (e.g., landing gear)

Index Each Document (by human or by computer)
• Count fij = # times term i appears in document j

Term–Document Matrix
Doc 1 Doc 2 . . . Doc n

Term 1 f11 f12
. . . f1n

Term 2 f21 f22
. . . f2n...

...
...

. . .
...

Term m fm1 fm2
. . . fmn

 = Am×n

Features
• A ≥ 0
• A can be really big
• A is sparse — but otherwise unstructured
• A contains a lot of uncertainty

Query Matching

Query Vector

• qT = (q1, q2, . . ., qm) where qi =
{

1 if Term i is requested
0 if not

Query Matching

Query Vector

• qT = (q1, q2, . . ., qm) where qi =
{

1 if Term i is requested
0 if not

How Close is the Query to Each Document?

Query Matching

Query Vector

• qT = (q1, q2, . . ., qm) where qi =
{

1 if Term i is requested
0 if not

How Close is the Query to Each Document?

• i.e., how close is q to each column Ai?

Query Matching

Query Vector

• qT = (q1, q2, . . ., qm) where qi =
{

1 if Term i is requested
0 if not

How Close is the Query to Each Document?

• i.e., how close is q to each column Ai?

θ

1θ

2

A1
A2

A3

q ‖q − A1‖ < ‖q − A2‖ but θ2 < θ1

Query Matching

Query Vector

• qT = (q1, q2, . . ., qm) where qi =
{

1 if Term i is requested
0 if not

How Close is the Query to Each Document?

• i.e., how close is q to each column Ai?

θ

1θ

2

A1
A2

A3

q ‖q − A1‖ < ‖q − A2‖ but θ2 < θ1

Use δi = cos θi =
qTAi

‖q‖ ‖Ai‖

Query Matching

Query Vector

• qT = (q1, q2, . . ., qm) where qi =
{

1 if Term i is requested
0 if not

How Close is the Query to Each Document?

• i.e., how close is q to each column Ai?

θ

1θ

2

A1
A2

A3

q ‖q − A1‖ < ‖q − A2‖ but θ2 < θ1

Use δi = cos θi =
qTAi

‖q‖ ‖Ai‖

Rank documents by size of δi

Query Matching

Query Vector

• qT = (q1, q2, . . ., qm) where qi =
{

1 if Term i is requested
0 if not

How Close is the Query to Each Document?

• i.e., how close is q to each column Ai?

θ

1θ

2

A1
A2

A3

q ‖q − A1‖ < ‖q − A2‖ but θ2 < θ1

Use δi = cos θi =
qTAi

‖q‖ ‖Ai‖

Rank documents by size of δi

Return Document i to user when δi ≥ tol

Term Weighting
A Defect

• If the term bank occurs once in Doc 1 but twice in Doc 2, and
if ‖A1‖ ≈ ‖A2‖, then a query containing only bank produces
δ2 ≈ 2δ1 (i.e., Doc 2 is rated twice as relevant as Doc 1).

Term Weighting
A Defect

• If the term bank occurs once in Doc 1 but twice in Doc 2, and
if ‖A1‖ ≈ ‖A2‖, then a query containing only bank produces
δ2 ≈ 2δ1 (i.e., Doc 2 is rated twice as relevant as Doc 1).

To Compensate

• Set aij = log(1 + fij) (other weights also possible)

Term Weighting
A Defect

• If the term bank occurs once in Doc 1 but twice in Doc 2, and
if ‖A1‖ ≈ ‖A2‖, then a query containing only bank produces
δ2 ≈ 2δ1 (i.e., Doc 2 is rated twice as relevant as Doc 1).

To Compensate

• Set aij = log(1 + fij) (other weights also possible)

Query Weights

• Terms Boeing and airplanes not equally important in queries

Term Weighting
A Defect

• If the term bank occurs once in Doc 1 but twice in Doc 2, and
if ‖A1‖ ≈ ‖A2‖, then a query containing only bank produces
δ2 ≈ 2δ1 (i.e., Doc 2 is rated twice as relevant as Doc 1).

To Compensate

• Set aij = log(1 + fij) (other weights also possible)

Query Weights

• Terms Boeing and airplanes not equally important in queries

• Importance of Term i tends to be inversely proportional to
νi = # Docs containing Term i

Term Weighting
A Defect

• If the term bank occurs once in Doc 1 but twice in Doc 2, and
if ‖A1‖ ≈ ‖A2‖, then a query containing only bank produces
δ2 ≈ 2δ1 (i.e., Doc 2 is rated twice as relevant as Doc 1).

To Compensate

• Set aij = log(1 + fij) (other weights also possible)

Query Weights

• Terms Boeing and airplanes not equally important in queries

• Importance of Term i tends to be inversely proportional to
νi = # Docs containing Term i

To Compensate

• Set qi =
{

log(n/νi) if νi �= 0
0 if νi = 0

(other weights also possible)

Uncertainties in A

Uncertainties in A
Ambiguity in Vocabulary

Uncertainties in A
Ambiguity in Vocabulary

• e.g., A plane could be . . .

Uncertainties in A
Ambiguity in Vocabulary

• e.g., A plane could be . . .

— A flat geometrical object

Uncertainties in A
Ambiguity in Vocabulary

• e.g., A plane could be . . .

— A flat geometrical object

— A woodworking tool

Uncertainties in A
Ambiguity in Vocabulary

• e.g., A plane could be . . .

— A flat geometrical object

— A woodworking tool

— A Boeing product

Uncertainties in A
Ambiguity in Vocabulary

• e.g., A plane could be . . .

— A flat geometrical object

— A woodworking tool

— A Boeing product

Variation in Writing Style

• No two authors write the same way

Uncertainties in A
Ambiguity in Vocabulary

• e.g., A plane could be

— A flat geometrical object

— A woodworking tool

— A Boeing product

Variation in Writing Style

• No two authors write the same way

— One author may write car and laptop

Uncertainties in A
Ambiguity in Vocabulary

• e.g., A plane could be

— A flat geometrical object

— A woodworking tool

— A Boeing product

Variation in Writing Style

• No two authors write the same way

— One author may write car and laptop

— Another author may write automobile and portable

Uncertainties in A
Ambiguity in Vocabulary

• e.g., A plane could be

— A flat geometrical object

— A woodworking tool

— A Boeing product

Variation in Writing Style

• No two authors write the same way

— One author may write car and laptop

— Another author may write automobile and portable

Variation in Indexing Conventions

• No two people index documents the same way

• Computer indexing is inexact and can be unpredictable

Theory vs Practice
In Theory — it’s easy

Theory vs Practice
In Theory — it’s easy

• Weight terms and normalize cols — Make ‖Ai‖ = 1

Theory vs Practice
In Theory — it’s easy

• Weight terms and normalize cols — Make ‖Ai‖ = 1

• For each new query, weight and normalize — Make ‖q‖ = 1

Theory vs Practice
In Theory — it’s easy

• Weight terms and normalize cols — Make ‖Ai‖ = 1

• For each new query, weight and normalize — Make ‖q‖ = 1

• Compute δi = cos θi = (qTA)i to return the most relevant docs

Theory vs Practice
In Theory — it’s easy

• Weight terms and normalize cols — Make ‖Ai‖ = 1

• For each new query, weight and normalize — Make ‖q‖ = 1

• Compute δi = cos θi = (qTA)i to return the most relevant docs

In Practice — it’s not so easy

Theory vs Practice
In Theory — it’s easy

• Weight terms and normalize cols — Make ‖Ai‖ = 1

• For each new query, weight and normalize — Make ‖q‖ = 1

• Compute δi = cos θi = (qTA)i to return the most relevant docs

In Practice — it’s not so easy

• Suppose query = gas

Theory vs Practice
In Theory — it’s easy

• Weight terms and normalize cols — Make ‖Ai‖ = 1

• For each new query, weight and normalize — Make ‖q‖ = 1

• Compute δi = cos θi = (qTA)i to return the most relevant docs

In Practice — it’s not so easy

• Suppose query = gas

• D1 indexed by gas, car, tire

Theory vs Practice
In Theory — it’s easy

• Weight terms and normalize cols — Make ‖Ai‖ = 1

• For each new query, weight and normalize — Make ‖q‖ = 1

• Compute δi = cos θi = (qTA)i to return the most relevant docs

In Practice — it’s not so easy

• Suppose query = gas

• D1 indexed by gas, car, tire (found)

Theory vs Practice
In Theory — it’s easy

• Weight terms and normalize cols — Make ‖Ai‖ = 1

• For each new query, weight and normalize — Make ‖q‖ = 1

• Compute δi = cos θi = (qTA)i to return the most relevant docs

In Practice — it’s not so easy

• Suppose query = gas

• D1 indexed by gas, car, tire (found)

• D2 indexed automobile, fuel, and tire

Theory vs Practice
In Theory — it’s easy

• Weight terms and normalize cols — Make ‖Ai‖ = 1

• For each new query, weight and normalize — Make ‖q‖ = 1

• Compute δi = cos θi = (qTA)i to return the most relevant docs

In Practice — it’s not so easy

• Suppose query = gas

• D1 indexed by gas, car, tire (found)

• D2 indexed automobile, fuel, and tire (missed)

Theory vs Practice
In Theory — it’s easy

• Weight terms and normalize cols — Make ‖Ai‖ = 1

• For each new query, weight and normalize — Make ‖q‖ = 1

• Compute δi = cos θi = (qTA)i to return the most relevant docs

In Practice — it’s not so easy

• Suppose query = gas

• D1 indexed by gas, car, tire (found)

• D2 indexed automobile, fuel, and tire (missed)

Somehow Reveal Latent Connections

• Find D2 by making the connection through tire

Theory vs Practice
In Theory — it’s easy

• Weight terms and normalize cols — Make ‖Ai‖ = 1

• For each new query, weight and normalize — Make ‖q‖ = 1

• Compute δi = cos θi = (qTA)i to return the most relevant docs

In Practice — it’s not so easy

• Suppose query = gas

• D1 indexed by gas, car, tire (found)

• D2 indexed automobile, fuel, and tire (missed)

Somehow Reveal Latent Connections

• Find D2 by making the connection through tire

• Do it FAST!

Theory vs Practice
In Theory — it’s easy

• Weight terms and normalize cols — Make ‖Ai‖ = 1

• For each new query, weight and normalize — Make ‖q‖ = 1

• Compute δi = cos θi = (qTA)i to return the most relevant docs

In Practice — it’s not so easy

• Suppose query = gas

• D1 indexed by gas, car, tire (found)

• D2 indexed automobile, fuel, and tire (missed)

Somehow Reveal Latent Connections

• Find D2 by making the connection through tire

• Do it FAST!

— Data compression

Contaminated Data (not text data)

x =



x0

x1

x2...
x510

x511



Contaminated Data (not text data)

x =



x0

x1

x2...
x510

x511



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-6

-4

-2

0

2

4

6

Contaminated Data (not text data)

x =



x0

x1

x2...
x510

x511



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-6

-4

-2

0

2

4

6

Goal

• Reveal hidden patterns

Contaminated Data (not text data)

x =



x0

x1

x2...
x510

x511



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-6

-4

-2

0

2

4

6

Goal

• Reveal hidden patterns

• Compress the data

Change Of Coordinates
New Basis B = {W0, W1, . . ., Wn−1}

Change Of Coordinates
New Basis B = {W0, W1, . . ., Wn−1}

• Find coordinates of x with respect to B

Change Of Coordinates
New Basis B = {W0, W1, . . ., Wn−1}

• Find coordinates of x with respect to B
— Find yk so that x =

∑
ykWk (Fourier expansion if B o.n.)

Change Of Coordinates
New Basis B = {W0, W1, . . ., Wn−1}

• Find coordinates of x with respect to B
— Find yk so that x =

∑
ykWk (Fourier expansion if B o.n.)

— yk = 〈Wk x〉 = amount of x in direction of Wk (if B o.n.)

Change Of Coordinates
New Basis B = {W0, W1, . . ., Wn−1}

• Find coordinates of x with respect to B
— Find yk so that x =

∑
ykWk (Fourier expansion if B o.n.)

— yk = 〈Wk x〉 = amount of x in direction of Wk (if B o.n.)

— x = Wy where W = (W0 |W1 | . . . |Wn−1)

Change Of Coordinates
New Basis B = {W0, W1, . . ., Wn−1}

• Find coordinates of x with respect to B
— Find yk so that x =

∑
ykWk (Fourier expansion if B o.n.)

— yk = 〈Wk x〉 = amount of x in direction of Wk (if B o.n.)

— x = Wy where W = (W0 |W1 | . . . |Wn−1)

— y = W−1x (y=W∗x if B o.n.)

Change Of Coordinates
New Basis B = {W0, W1, . . ., Wn−1}

• Find coordinates of x with respect to B
— Find yk so that x =

∑
ykWk (Fourier expansion if B o.n.)

— yk = 〈Wk x〉 = amount of x in direction of Wk (if B o.n.)

— x = Wy where W = (W0 |W1 | . . . |Wn−1)

— y = W−1x (y=W∗x if B o.n.)

Oscillatory

Change Of Coordinates
New Basis B = {W0, W1, . . ., Wn−1}

• Find coordinates of x with respect to B
— Find yk so that x =

∑
ykWk (Fourier expansion if B o.n.)

— yk = 〈Wk x〉 = amount of x in direction of Wk (if B o.n.)

— x = Wy where W = (W0 |W1 | . . . |Wn−1)

— y = W−1x (y=W∗x if B o.n.)

Oscillatory

• W = 1
2


1 1 1 .. . 1
1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ωn−2
...

...
...

. . .
...

1 ωn−1 ωn−2 . . . ω


n×n

ω = e2πi/n

Change Of Coordinates
New Basis B = {W0, W1, . . ., Wn−1}

• Find coordinates of x with respect to B
— Find yk so that x =

∑
ykWk (Fourier expansion if B o.n.)

— yk = 〈Wk x〉 = amount of x in direction of Wk (if B o.n.)

— x = Wy where W = (W0 |W1 | . . . |Wn−1)

— y = W−1x (y=W∗x if B o.n.)

Oscillatory

• W = 1
2


1 1 1 .. . 1
1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ωn−2
...

...
...

. . .
...

1 ωn−1 ωn−2 . . . ω


n×n

ω = e2πi/n, Wk = e2πikt

2

t = 0,1/n,2/n, ...

Change Of Coordinates
New Basis B = {W0, W1, . . ., Wn−1}

• Find coordinates of x with respect to B
— Find yk so that x =

∑
ykWk (Fourier expansion if B o.n.)

— yk = 〈Wk x〉 = amount of x in direction of Wk (if B o.n.)

— x = Wy where W = (W0 |W1 | . . . |Wn−1)

— y = W−1x (y=W∗x if B o.n.)

Oscillatory

• W = 1
2


1 1 1 .. . 1
1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ωn−2
...

...
...

. . .
...

1 ωn−1 ωn−2 . . . ω


n×n

ω = e2πi/n, Wk = e2πikt

2

t = 0,1/n,2/n, ...

• Wk + Wn−k = cos 2πkt

Change Of Coordinates
New Basis B = {W0, W1, . . ., Wn−1}

• Find coordinates of x with respect to B
— Find yk so that x =

∑
ykWk (Fourier expansion if B o.n.)

— yk = 〈Wk x〉 = amount of x in direction of Wk (if B o.n.)

— x = Wy where W = (W0 |W1 | . . . |Wn−1)

— y = W−1x (y=W∗x if B o.n.)

Oscillatory

• W = 1
2


1 1 1 .. . 1
1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ωn−2
...

...
...

. . .
...

1 ωn−1 ωn−2 . . . ω


n×n

ω = e2πi/n, Wk = e2πikt

2

t = 0,1/n,2/n, ...

• Wk + Wn−k = cos 2πkt

• Wk − Wn−k = i sin 2πkt (0 < k < n)

Making The Change

Making The Change

Recall

• x =
∑

ykWk = Wy

Making The Change

Recall

• x =
∑

ykWk = Wy

• y = W−1x

Making The Change

Recall

• x =
∑

ykWk = Wy

• y = W−1x

W−1 = (4/n)W = Discrete Fourier Transform

Making The Change

Recall

• x =
∑

ykWk = Wy

• y = W−1x

W−1 = (4/n)W = Discrete Fourier Transform
y0

y1

y2...
yn−1

 =
2

n


1 1 1 .. . 1
1 ξ ξ2 . . . ξn−1

1 ξ2 ξ4 . . . ξn−2

...
...

...
. . .

...
1 ξn−1 ξn−2 . . . ξ




x0

x1

x2...
xn−1


ξ = e−2πi/n = ω

The New Coordinates

0 100 200 300 400 500 600
-0.5

0

0.5

1

1.5

R
ea

l

0 100 200 300 400 500 600
-3

-2

-1

0

1

2

3

Im
ag

in
ar

y

The New Coordinates

0 100 200 300 400 500 600
-0.5

0

0.5

1

1.5

R
ea

l

0 100 200 300 400 500 600
-3

-2

-1

0

1

2

3

Im
ag

in
ar

y

• Only 4 are significant: y80 = y432 = 1

The New Coordinates

0 100 200 300 400 500 600
-0.5

0

0.5

1

1.5

R
ea

l

0 100 200 300 400 500 600
-3

-2

-1

0

1

2

3

Im
ag

in
ar

y

• Only 4 are significant: y80 = y432 = 1 and y50 = −2i = −y462

The New Coordinates

0 100 200 300 400 500 600
-0.5

0

0.5

1

1.5

R
ea

l

0 100 200 300 400 500 600
-3

-2

-1

0

1

2

3

Im
ag

in
ar

y

• Only 4 are significant: y80 = y432 = 1 and y50 = −2i = −y462

• x =
∑

ykWk = 1W80 + 1W432 − 2iW50 + 2iW462 +
∑

εjWj

The New Coordinates

0 100 200 300 400 500 600
-0.5

0

0.5

1

1.5

R
ea

l

0 100 200 300 400 500 600
-3

-2

-1

0

1

2

3

Im
ag

in
ar

y

• Only 4 are significant: y80 = y432 = 1 and y50 = −2i = −y462

• x =
∑

ykWk = 1W80 + 1W432 − 2iW50 + 2iW462 +
∑

εjWj

• Small components (noise) are nondirectional

Drop Small Coordinates

• x =
∑

ykWk = 1W80 + 1W432 − 2iW50 + 2iW462 +
∑

εjWj

Drop Small Coordinates

• x =
∑

ykWk = 1W80 + 1W432 − 2iW50 + 2iW462 +
∑

εjWj

• x̃ = (W80 + W432) − 2i(W50 − W462)

Drop Small Coordinates

• x =
∑

ykWk = 1W80 + 1W432 − 2iW50 + 2iW462 +
∑

εjWj

• x̃ = (W80 + W432) − 2i(W50 − W462)

• n = 512

• x̃ = (W80 + Wn−80) − 2i(W50 − Wn−50)

Drop Small Coordinates

• x =
∑

ykWk = 1W80 + 1W432 − 2iW50 + 2iW462 +
∑

εjWj

• x̃ = (W80 + W432) − 2i(W50 − W462)

• n = 512

• x̃ = (W80 + Wn−80) − 2i(W50 − Wn−50) Compressed (512→4)

Drop Small Coordinates

• x =
∑

ykWk = 1W80 + 1W432 − 2iW50 + 2iW462 +
∑

εjWj

• x̃ = (W80 + W432) − 2i(W50 − W462)

• n = 512

• x̃ = (W80 + Wn−80) − 2i(W50 − Wn−50) Compressed (512→4)

— Wk + Wn−k = cos 2πkt

— Wk − Wn−k = i sin 2πkt

Drop Small Coordinates

• x =
∑

ykWk = 1W80 + 1W432 − 2iW50 + 2iW462 +
∑

εjWj

• x̃ = (W80 + W432) − 2i(W50 − W462)

• n = 512

• x̃ = (W80 + Wn−80) − 2i(W50 − Wn−50) Compressed (512→4)

— Wk + Wn−k = cos 2πkt

— Wk − Wn−k = i sin 2πkt

• x̃ = cos 2π80t + 2 sin 2π50t

Drop Small Coordinates

• x =
∑

ykWk = 1W80 + 1W432 − 2iW50 + 2iW462 +
∑

εjWj

• x̃ = (W80 + W432) − 2i(W50 − W462)

• n = 512

• x̃ = (W80 + Wn−80) − 2i(W50 − Wn−50) Compressed (512→4)

— Wk + Wn−k = cos 2πkt

— Wk − Wn−k = i sin 2πkt

• x̃ = cos 2π80t + 2 sin 2π50t Cleaned

Drop Small Coordinates

• x =
∑

ykWk = 1W80 + 1W432 − 2iW50 + 2iW462 +
∑

εjWj

• x̃ = (W80 + W432) − 2i(W50 − W462)

• n = 512

• x̃ = (W80 + Wn−80) − 2i(W50 − Wn−50) Compressed (512→4)

— Wk + Wn−k = cos 2πkt

— Wk − Wn−k = i sin 2πkt

• x̃ = cos 2π80t + 2 sin 2π50t Cleaned

• x = cos 2π80t + 2 sin 2π50t + noise

Original Data

x =



x0

x1

x2...
x510

x511



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-6

-4

-2

0

2

4

6

Cleaned & Compressed Data

x̃ = x − noise = (W80 + W432) − 2i(W50 − W462)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-3

-2

-1

0

1

2

3

cos 2π80t + 2 sin 2π50t

The DFT Game
Matrix–Vector Product

y = 2
n


1 1 1 .. . 1
1 ξ ξ2 . . . ξn−1

1 ξ2 ξ4 . . . ξn−2

...
...

...
. . .

...
1 ξn−1 ξn−2 . . . ξ




x0

x1

x2...
xn−1

 ξ = e−2πi/n

The DFT Game
Matrix–Vector Product

y = 2
n


1 1 1 .. . 1
1 ξ ξ2 . . . ξn−1

1 ξ2 ξ4 . . . ξn−2

...
...

...
. . .

...
1 ξn−1 ξn−2 . . . ξ




x0

x1

x2...
xn−1

 ξ = e−2πi/n

Simple in Theory, But . . .

The DFT Game
Matrix–Vector Product

y = 2
n


1 1 1 .. . 1
1 ξ ξ2 . . . ξn−1

1 ξ2 ξ4 . . . ξn−2

...
...

...
. . .

...
1 ξn−1 ξn−2 . . . ξ




x0

x1

x2...
xn−1

 ξ = e−2πi/n

Simple in Theory, But . . .

• Must do it FAST!

The DFT Game
Matrix–Vector Product

y = 2
n


1 1 1 .. . 1
1 ξ ξ2 . . . ξn−1

1 ξ2 ξ4 . . . ξn−2

...
...

...
. . .

...
1 ξn−1 ξn−2 . . . ξ




x0

x1

x2...
xn−1

 ξ = e−2πi/n

Simple in Theory, But . . .

• Must do it FAST!

Need For Speed =⇒ Matrix Factorizations =⇒ FFT

The DFT Game
Matrix–Vector Product

y = 2
n


1 1 1 .. . 1
1 ξ ξ2 . . . ξn−1

1 ξ2 ξ4 . . . ξn−2

...
...

...
. . .

...
1 ξn−1 ξn−2 . . . ξ




x0

x1

x2...
xn−1

 ξ = e−2πi/n

Simple in Theory, But . . .

• Must do it FAST!

Need For Speed =⇒ Matrix Factorizations =⇒ FFT

• Fn = Bn(I2 ⊗ Fn/2)Pn Bn =
[

In/2 Dn/2

In/2 −Dn/2

]
Dn/2 =

[
1 ξ

ξ2...

]

The DFT Game
Matrix–Vector Product

y = 2
n


1 1 1 .. . 1
1 ξ ξ2 . . . ξn−1

1 ξ2 ξ4 . . . ξn−2

...
...

...
. . .

...
1 ξn−1 ξn−2 . . . ξ




x0

x1

x2...
xn−1

 ξ = e−2πi/n

Simple in Theory, But . . .

• Must do it FAST!

Need For Speed =⇒ Matrix Factorizations =⇒ FFT

• Fn = Bn(I2 ⊗ Fn/2)Pn Bn =
[

In/2 Dn/2

In/2 −Dn/2

]
Dn/2 =

[
1 ξ

ξ2...

]
• FFT changes n2 flop requirement into (n/2) log2 n

The DFT Game
Matrix–Vector Product

y = 2
n


1 1 1 .. . 1
1 ξ ξ2 . . . ξn−1

1 ξ2 ξ4 . . . ξn−2

...
...

...
. . .

...
1 ξn−1 ξn−2 . . . ξ




x0

x1

x2...
xn−1

 ξ = e−2πi/n

Simple in Theory, But . . .

• Must do it FAST!

Need For Speed =⇒ Matrix Factorizations =⇒ FFT

• Fn = Bn(I2 ⊗ Fn/2)Pn Bn =
[

In/2 Dn/2

In/2 −Dn/2

]
Dn/2 =

[
1 ξ

ξ2...

]
• FFT changes n2 flop requirement into (n/2) log2 n

“The most valuable numerical algorithm in our lifetime.”

—G. Strang, Bulletin of the AMS, April, 1993.

Back To IR
Almost the Same Problem

• Reveal hidden patterns & evaluate qTA fast

Back To IR
Almost the Same Problem

• Reveal hidden patterns & evaluate qTA fast (clean & compress)

Back To IR
Almost the Same Problem

• Reveal hidden patterns & evaluate qTA fast (clean & compress)

Data is Now the Term-Doc Matrix in Standard Coordinates

• A =
∑
i,j

aijEij Eij = eieT
j

Back To IR
Almost the Same Problem

• Reveal hidden patterns & evaluate qTA fast (clean & compress)

Data is Now the Term-Doc Matrix in Standard Coordinates

• A =
∑
i,j

aijEij Eij = eieT
j

Change Basis to B = {Z1, Z2, . . .} That Can Squeeze & Clean

• A =
∑

σiZi (Fourier Expansion)

Back To IR
Almost the Same Problem

• Reveal hidden patterns & evaluate qTA fast (clean & compress)

Data is Now the Term-Doc Matrix in Standard Coordinates

• A =
∑
i,j

aijEij Eij = eieT
j

Change Basis to B = {Z1, Z2, . . .} That Can Squeeze & Clean

• A =
∑

σiZi (Fourier Expansion)

• B o.n. ⇒ σi = 〈Zi A〉 = amount of A in direction of Zi

Back To IR
Almost the Same Problem

• Reveal hidden patterns & evaluate qTA fast (clean & compress)

Data is Now the Term-Doc Matrix in Standard Coordinates

• A =
∑
i,j

aijEij Eij = eieT
j

Change Basis to B = {Z1, Z2, . . .} That Can Squeeze & Clean

• A =
∑

σiZi (Fourier Expansion)

• B o.n. ⇒ σi = 〈Zi A〉 = amount of A in direction of Zi

Matrix Factorizations: A = URVT =
∑

rijuivT
j =

∑
rijZij

Back To IR
Almost the Same Problem

• Reveal hidden patterns & evaluate qTA fast (clean & compress)

Data is Now the Term-Doc Matrix in Standard Coordinates

• A =
∑
i,j

aijEij Eij = eieT
j

Change Basis to B = {Z1, Z2, . . .} That Can Squeeze & Clean

• A =
∑

σiZi (Fourier Expansion)

• B o.n. ⇒ σi = 〈Zi A〉 = amount of A in direction of Zi

Matrix Factorizations: A = URVT =
∑

rijuivT
j =

∑
rijZij

• Represent data with as few directions Zi as possible

Back To IR
Almost the Same Problem

• Reveal hidden patterns & evaluate qTA fast (clean & compress)

Data is Now the Term-Doc Matrix in Standard Coordinates

• A =
∑
i,j

aijEij Eij = eieT
j

Change Basis to B = {Z1, Z2, . . .} That Can Squeeze & Clean

• A =
∑

σiZi (Fourier Expansion)

• B o.n. ⇒ σi = 〈Zi A〉 = amount of A in direction of Zi

Matrix Factorizations: A = URVT =
∑

rijuivT
j =

∑
rijZij

• Represent data with as few directions Zi as possible

• SVD ⇒ R =

[
σ1...

σr
0...

0

]
⇒ A =

∑r
i=1 σiZi, 〈Zi Zj〉 =

{
1 i=j

0 i�=j

Same As Before
Assume Nondirectional Uncertainty

Same As Before
Assume Nondirectional Uncertainty

• Drop small σi’s — replace A with Ã =
∑k

i=1 σiZi

Same As Before
Assume Nondirectional Uncertainty

• Drop small σi’s — replace A with Ã =
∑k

i=1 σiZi

• Lose only small part of relevance

Same As Before
Assume Nondirectional Uncertainty

• Drop small σi’s — replace A with Ã =
∑k

i=1 σiZi

• Lose only small part of relevance

• Lose larger proportion of uncertainty

Same As Before
Assume Nondirectional Uncertainty

• Drop small σi’s — replace A with Ã =
∑k

i=1 σiZi

• Lose only small part of relevance

• Lose larger proportion of uncertainty

New Query Matching Strategy

Same As Before
Assume Nondirectional Uncertainty

• Drop small σi’s — replace A with Ã =
∑k

i=1 σiZi

• Lose only small part of relevance

• Lose larger proportion of uncertainty

New Query Matching Strategy

• Normalize

— q ← q/‖q‖

Same As Before
Assume Nondirectional Uncertainty

• Drop small σi’s — replace A with Ã =
∑k

i=1 σiZi

• Lose only small part of relevance

• Lose larger proportion of uncertainty

New Query Matching Strategy

• Normalize

— q ← q/‖q‖

— Ã ←
∑k

i=1 σiuivT
i D =

∑k
i=1 σiuiṽT

i

Same As Before
Assume Nondirectional Uncertainty

• Drop small σi’s — replace A with Ã =
∑k

i=1 σiZi

• Lose only small part of relevance

• Lose larger proportion of uncertainty

New Query Matching Strategy

• Normalize

— q ← q/‖q‖

— Ã ←
∑k

i=1 σiuivT
i D =

∑k
i=1 σiuiṽT

i

• Compare query to each document

— qT Ã =
∑k

i=1 σi(qTui)ṽT
i = (δ1, δ2, . . ., δn)

Pros & Cons
Advantages

• Compression

— A replaced with a few sing values & vectors (but dense)

Pros & Cons
Advantages

• Compression

— A replaced with a few sing values & vectors (but dense)

— They are determined & normalized only once

Pros & Cons
Advantages

• Compression

— A replaced with a few sing values & vectors (but dense)

— They are determined & normalized only once

• SPEED!

Pros & Cons
Advantages

• Compression

— A replaced with a few sing values & vectors (but dense)

— They are determined & normalized only once

• SPEED!

— Each query requires only a few inner products

qT Ãm×n =
∑k

i=1 σi(qTui)ṽT
i

Pros & Cons
Advantages

• Compression

— A replaced with a few sing values & vectors (but dense)

— They are determined & normalized only once

• SPEED!

— Each query requires only a few inner products

qT Ãm×n =
∑k

i=1 σi(qTui)ṽT
i

• Latent semantic associations are made

— Relevant docs not found by direct matching show up

Pros & Cons
Advantages

• Compression

— A replaced with a few sing values & vectors (but dense)

— They are determined & normalized only once

• SPEED!

— Each query requires only a few inner products

qT Ãm×n =
∑k

i=1 σi(qTui)ṽT
i

• Latent semantic associations are made

— Relevant docs not found by direct matching show up

— Latent Semantic Indexing (LSI)

Pros & Cons
Advantages

• Compression

— A replaced with a few sing values & vectors (but dense)

— They are determined & normalized only once

• SPEED!

— Each query requires only a few inner products

qT Ãm×n =
∑k

i=1 σi(qTui)ṽT
i

• Latent semantic associations are made

— Relevant docs not found by direct matching show up

— Latent Semantic Indexing (LSI)

Disadvantages

Pros & Cons
Advantages

• Compression

— A replaced with a few sing values & vectors (but dense)

— They are determined & normalized only once

• SPEED!

— Each query requires only a few inner products

qT Ãm×n =
∑k

i=1 σi(qTui)ṽT
i

• Latent semantic associations are made

— Relevant docs not found by direct matching show up

— Latent Semantic Indexing (LSI)

Disadvantages

• Adding & deleting docs requires updating & downdating SVD

Pros & Cons
Advantages

• Compression

— A replaced with a few sing values & vectors (but dense)

— They are determined & normalized only once

• SPEED!

— Each query requires only a few inner products

qT Ãm×n =
∑k

i=1 σi(qTui)ṽT
i

• Latent semantic associations are made

— Relevant docs not found by direct matching show up

— Latent Semantic Indexing (LSI)

Disadvantages

• Adding & deleting docs requires updating & downdating SVD

• Determining optimal k is not easy (empirical tuning required)

Other Fourier Expansions ??

Other Fourier Expansions ??
Truncated URV Factorizations

Other Fourier Expansions ??
Truncated URV Factorizations

DFT — FFT

Other Fourier Expansions ??
Truncated URV Factorizations

DFT — FFT
• No compression — no oscillatory components

Other Fourier Expansions ??
Truncated URV Factorizations

DFT — FFT
• No compression — no oscillatory components

Haar Transform H2 =
[
1 1
1 −1

]
H4 =


1 1 1 0
1 1 −1 0
1 −1 0 1
1 −1 0 −1



Other Fourier Expansions ??
Truncated URV Factorizations

DFT — FFT
• No compression — no oscillatory components

Haar Transform H2 =
[
1 1
1 −1

]
H4 =


1 1 1 0
1 1 −1 0
1 −1 0 1
1 −1 0 −1


• Hn = (I2 ⊗ Hn/2)Pn

[
Hn/2

In/2

]
⇒ Hnx is Fast! (if n=2p)

Other Fourier Expansions ??
Truncated URV Factorizations

DFT — FFT
• No compression — no oscillatory components

Haar Transform H2 =
[
1 1
1 −1

]
H4 =


1 1 1 0
1 1 −1 0
1 −1 0 1
1 −1 0 −1


• Hn = (I2 ⊗ Hn/2)Pn

[
Hn/2

In/2

]
⇒ Hnx is Fast! (if n=2p)

• Factor A = HmBHT
n =

∑
i,j βijhihT

j (h’s only use -1, 0, 1)

Other Fourier Expansions ??
Truncated URV Factorizations

DFT — FFT
• No compression — no oscillatory components

Haar Transform H2 =
[
1 1
1 −1

]
H4 =


1 1 1 0
1 1 −1 0
1 −1 0 1
1 −1 0 −1


• Hn = (I2 ⊗ Hn/2)Pn

[
Hn/2

In/2

]
⇒ Hnx is Fast! (if n=2p)

• Factor A = HmBHT
n =

∑
i,j βijhihT

j (h’s only use -1, 0, 1)

— More than a few βij’s may be needed

Other Fourier Expansions ??
Truncated URV Factorizations

DFT — FFT
• No compression — no oscillatory components

Haar Transform H2 =
[
1 1
1 −1

]
H4 =


1 1 1 0
1 1 −1 0
1 −1 0 1
1 −1 0 −1


• Hn = (I2 ⊗ Hn/2)Pn

[
Hn/2

In/2

]
⇒ Hnx is Fast! (if n=2p)

• Factor A = HmBHT
n =

∑
i,j βijhihT

j (h’s only use -1, 0, 1)

— More than a few βij’s may be needed
— Needs padding if m or n not a power of 2

Other Fourier Expansions ??
Truncated URV Factorizations

DFT — FFT
• No compression — no oscillatory components

Haar Transform H2 =
[
1 1
1 −1

]
H4 =


1 1 1 0
1 1 −1 0
1 −1 0 1
1 −1 0 −1


• Hn = (I2 ⊗ Hn/2)Pn

[
Hn/2

In/2

]
⇒ Hnx is Fast! (if n=2p)

• Factor A = HmBHT
n =

∑
i,j βijhihT

j (h’s only use -1, 0, 1)

— More than a few βij’s may be needed
— Needs padding if m or n not a power of 2

Semidiscrete Decomposition (T. Kolda and D. O’Leary, 1998)

• Approximate A ≈
∑k

i=1 αixiyj xi and yj only use −1, 0, or 1

Other Fourier Expansions ??
Truncated URV Factorizations

DFT — FFT
• No compression — no oscillatory components

Haar Transform H2 =
[
1 1
1 −1

]
H4 =


1 1 1 0
1 1 −1 0
1 −1 0 1
1 −1 0 −1


• Hn = (I2 ⊗ Hn/2)Pn

[
Hn/2

In/2

]
⇒ Hnx is Fast! (if n=2p)

• Factor A = HmBHT
n =

∑
i,j βijhihT

j (h’s only use -1, 0, 1)

— More than a few βij’s may be needed
— Needs padding if m or n not a power of 2

Semidiscrete Decomposition (T. Kolda and D. O’Leary, 1998)

• Approximate A ≈
∑k

i=1 αixiyj xi and yj only use −1, 0, or 1

Other Wavelet Transforms?

Link Analysis (Think Web)
How To Take Advantage of Link Structure ?

Link Analysis (Think Web)
How To Take Advantage of Link Structure ?

Indexing and Ranking

• Still must index key terms on each page

Link Analysis (Think Web)
How To Take Advantage of Link Structure ?

Indexing and Ranking

• Still must index key terms on each page
— Robots crawl the web — software does indexing

Link Analysis (Think Web)
How To Take Advantage of Link Structure ?

Indexing and Ranking

• Still must index key terms on each page
— Robots crawl the web — software does indexing

• Inverted file structure
— Term1 → Pi, Pj, . . .

Link Analysis (Think Web)
How To Take Advantage of Link Structure ?

Indexing and Ranking

• Still must index key terms on each page
— Robots crawl the web — software does indexing

• Inverted file structure
— Term1 → Pi, Pj, . . .

— Term2 → Pk, Pl,

Link Analysis (Think Web)
How To Take Advantage of Link Structure ?

Indexing and Ranking

• Still must index key terms on each page
— Robots crawl the web — software does indexing

• Inverted file structure
— Term1 → Pi, Pj, . . .

— Term2 → Pk, Pl,

• Attach an importance rating to Pi, Pj, Pk, Pl, . . .

Link Analysis (Think Web)
How To Take Advantage of Link Structure ?

Indexing and Ranking

• Still must index key terms on each page
— Robots crawl the web — software does indexing

• Inverted file structure
— Term1 → Pi, Pj, . . .

— Term2 → Pk, Pl,

• Attach an importance rating to Pi, Pj, Pk, Pl, . . .

• Direct query matching
— Q = Term1, T erm2, . . . produces Pi, Pj, Pk, Pl, . . .

Link Analysis (Think Web)
How To Take Advantage of Link Structure ?

Indexing and Ranking

• Still must index key terms on each page
— Robots crawl the web — software does indexing

• Inverted file structure
— Term1 → Pi, Pj, . . .

— Term2 → Pk, Pl,

• Attach an importance rating to Pi, Pj, Pk, Pl, . . .

• Direct query matching
— Q = Term1, T erm2, . . . produces Pi, Pj, Pk, Pl, . . .

• Return Pi, Pj, Pk, Pl, . . . to user in order of importance

How To Measure “Importance”

How To Measure “Importance”

Hubs & Authorities (Jon Kleinberg 1998)

• Good hub pages point to good authority pages

• Good authorities are pointed to by good hubs

How To Measure “Importance”

Hubs & Authorities (Jon Kleinberg 1998)

• Good hub pages point to good authority pages

• Good authorities are pointed to by good hubs

HITS Algorithm

• For each query a “neighborhood graph” N is built

How To Measure “Importance”

Hubs & Authorities (Jon Kleinberg 1998)

• Good hub pages point to good authority pages

• Good authorities are pointed to by good hubs

HITS Algorithm

• For each query a “neighborhood graph” N is built

• Hub and authority scores for nodes in N are computed

— Eigenvector computation

How To Measure “Importance”

Hubs & Authorities (Jon Kleinberg 1998)

• Good hub pages point to good authority pages

• Good authorities are pointed to by good hubs

HITS Algorithm

• For each query a “neighborhood graph” N is built

• Hub and authority scores for nodes in N are computed

— Eigenvector computation

• Works, but requires new graph for each query

How To Measure “Importance”

Hubs & Authorities (Jon Kleinberg 1998)

• Good hub pages point to good authority pages

• Good authorities are pointed to by good hubs

HITS Algorithm

• For each query a “neighborhood graph” N is built

• Hub and authority scores for nodes in N are computed

— Eigenvector computation

• Works, but requires new graph for each query

• Similar ideas in TEOMA.com

Google’s Idea

PageRank (Sergey Brin & Lawrence Page 1998)

Google’s Idea

PageRank (Sergey Brin & Lawrence Page 1998)

• Your page P has some rank r(P)

Google’s Idea

PageRank (Sergey Brin & Lawrence Page 1998)

• Your page P has some rank r(P)

• Adjust r(P) higher or lower depending on ranks of pages
that point to P

Google’s Idea

PageRank (Sergey Brin & Lawrence Page 1998)

• Your page P has some rank r(P)

• Adjust r(P) higher or lower depending on ranks of pages
that point to P

• Importance is not number of in-links or out-links

Google’s Idea

PageRank (Sergey Brin & Lawrence Page 1998)

• Your page P has some rank r(P)

• Adjust r(P) higher or lower depending on ranks of pages
that point to P

• Importance is not number of in-links or out-links

— One link to P from Yahoo! is important

— Many links to P from me is not

Google’s Idea

PageRank (Sergey Brin & Lawrence Page 1998)

• Your page P has some rank r(P)

• Adjust r(P) higher or lower depending on ranks of pages
that point to P

• Importance is not number of in-links or out-links

— One link to P from Yahoo! is important

— Many links to P from me is not

• But if Yahoo! points to many places, the value of the link to P
is diluted

PageRank
The Definition

• r(P) =
∑
P∈BP

r(P)
|P |

— BP = {all pages pointing to P}
— |P | = number of out links from P

PageRank
The Definition

• r(P) =
∑
P∈BP

r(P)
|P |

— BP = {all pages pointing to P}
— |P | = number of out links from P

Successive Refinement

• Start with r0(Pi) = 1/n for all pages P1, P2, . . ., Pn

• Iteratively refine rankings for each page

PageRank
The Definition

• r(P) =
∑
P∈BP

r(P)
|P |

— BP = {all pages pointing to P}
— |P | = number of out links from P

Successive Refinement

• Start with r0(Pi) = 1/n for all pages P1, P2, . . ., Pn

• Iteratively refine rankings for each page

— r1(Pi) =
∑

P∈BPi

r0(P)
|P |

PageRank
The Definition

• r(P) =
∑
P∈BP

r(P)
|P |

— BP = {all pages pointing to P}
— |P | = number of out links from P

Successive Refinement

• Start with r0(Pi) = 1/n for all pages P1, P2, . . ., Pn

• Iteratively refine rankings for each page

— r1(Pi) =
∑

P∈BPi

r0(P)
|P |

— r2(Pi) =
∑

P∈BPi

r1(P)
|P |

PageRank
The Definition

• r(P) =
∑
P∈BP

r(P)
|P |

— BP = {all pages pointing to P}
— |P | = number of out links from P

Successive Refinement

• Start with r0(Pi) = 1/n for all pages P1, P2, . . ., Pn

• Iteratively refine rankings for each page

— r1(Pi) =
∑

P∈BPi

r0(P)
|P |

— r2(Pi) =
∑

P∈BPi

r1(P)
|P |

. . .

— rj+1(Pi) =
∑

P∈BPi

rj(P)
|P |

In Matrix Notation
After Step j

• πT
j =

[
rj(P1), rj(P2), . . ., rj(Pn)

]

In Matrix Notation
After Step j

• πT
j =

[
rj(P1), rj(P2), . . ., rj(Pn)

]
• πT

j+1 = πT
j P where pij =

{
1/|Pi| if i → j

0 otherwise

In Matrix Notation
After Step j

• πT
j =

[
rj(P1), rj(P2), . . ., rj(Pn)

]
• πT

j+1 = πT
j P where pij =

{
1/|Pi| if i → j

0 otherwise

• PageRank = lim
j→∞

πT
j = πT (provided limit exists)

In Matrix Notation
After Step j

• πT
j =

[
rj(P1), rj(P2), . . ., rj(Pn)

]
• πT

j+1 = πT
j P where pij =

{
1/|Pi| if i → j

0 otherwise

• PageRank = lim
j→∞

πT
j = πT (provided limit exists)

It’s A Markov Chain

• P =
[
pij

]
is a stochastic matrix (row sums = 1)

In Matrix Notation
After Step j

• πT
j =

[
rj(P1), rj(P2), . . ., rj(Pn)

]
• πT

j+1 = πT
j P where pij =

{
1/|Pi| if i → j

0 otherwise

• PageRank = lim
j→∞

πT
j = πT (provided limit exists)

It’s A Markov Chain

• P =
[
pij

]
is a stochastic matrix (row sums = 1)

• Each πT
j (and πT) is a probability vector

(∑
i

rj(Pi) = 1

)

In Matrix Notation
After Step j

• πT
j =

[
rj(P1), rj(P2), . . ., rj(Pn)

]
• πT

j+1 = πT
j P where pij =

{
1/|Pi| if i → j

0 otherwise

• PageRank = lim
j→∞

πT
j = πT (provided limit exists)

It’s A Markov Chain

• P =
[
pij

]
is a stochastic matrix (row sums = 1)

• Each πT
j (and πT) is a probability vector

(∑
i

rj(Pi) = 1

)

• πT
j+1 = πT

j P is random walk on the graph defined by links

Random Surfer

Web Surfer Randomly Clicks On Links (Back button not a link)

• Long-run proportion of time on page Pi is πi

Random Surfer

Web Surfer Randomly Clicks On Links (Back button not a link)

• Long-run proportion of time on page Pi is πi

Problems

• Dead end page (nothing to click on)

Random Surfer

Web Surfer Randomly Clicks On Links (Back button not a link)

• Long-run proportion of time on page Pi is πi

Problems

• Dead end page (nothing to click on)
— No convergence!

Random Surfer

Web Surfer Randomly Clicks On Links (Back button not a link)

• Long-run proportion of time on page Pi is πi

Problems

• Dead end page (nothing to click on)
— No convergence!

• Could get trapped into a cycle (Pi → Pj → Pi)

Random Surfer

Web Surfer Randomly Clicks On Links (Back button not a link)

• Long-run proportion of time on page Pi is πi

Problems

• Dead end page (nothing to click on)
— No convergence!

• Could get trapped into a cycle (Pi → Pj → Pi)
— No convergence!

Random Surfer

Web Surfer Randomly Clicks On Links (Back button not a link)

• Long-run proportion of time on page Pi is πi

Problems

• Dead end page (nothing to click on)
— No convergence!

• Could get trapped into a cycle (Pi → Pj → Pi)
— No convergence!

Convergence

• Markov chain must be irreducible and aperiodic

Random Surfer

Web Surfer Randomly Clicks On Links (Back button not a link)

• Long-run proportion of time on page Pi is πi

Problems

• Dead end page (nothing to click on)
— No convergence!

• Could get trapped into a cycle (Pi → Pj → Pi)
— No convergence!

Convergence

• Markov chain must be irreducible and aperiodic

Bored Surfer Enters Random URL

Random Surfer

Web Surfer Randomly Clicks On Links (Back button not a link)

• Long-run proportion of time on page Pi is πi

Problems

• Dead end page (nothing to click on)
— No convergence!

• Could get trapped into a cycle (Pi → Pj → Pi)
— No convergence!

Convergence

• Markov chain must be irreducible and aperiodic

Bored Surfer Enters Random URL

• Replace P by P̃ = αP + (1− α)E where eij = 1/n α ≈ .85

Random Surfer

Web Surfer Randomly Clicks On Links (Back button not a link)

• Long-run proportion of time on page Pi is πi

Problems

• Dead end page (nothing to click on)
— No convergence!

• Could get trapped into a cycle (Pi → Pj → Pi)
— No convergence!

Convergence

• Markov chain must be irreducible and aperiodic

Bored Surfer Enters Random URL

• Replace P by P̃ = αP + (1− α)E where eij = 1/n α ≈ .85

— Different E’s and α’s allow customization & speedup

Computing πT

World’s Largest Eigenvector Problem (C. Moler)

• Solve πT = πTP (stationary distribution vector)

Computing πT

World’s Largest Eigenvector Problem (C. Moler)

• Solve πT = πTP (stationary distribution vector)

• πT (I − P) = 0 (too big for direct solves)

Computing πT

World’s Largest Eigenvector Problem (C. Moler)

• Solve πT = πTP (stationary distribution vector)

• πT (I − P) = 0 (too big for direct solves)

• Start with πT
0 = e/n and iterate πT

j+1 = πT
j P (power method)

Computing πT

World’s Largest Eigenvector Problem (C. Moler)

• Solve πT = πTP (stationary distribution vector)

• πT (I − P) = 0 (too big for direct solves)

• Start with πT
0 = e/n and iterate πT

j+1 = πT
j P (power method)

Updating Is A Big Problem

• Link structure of web is extremely dynamic

Computing πT

World’s Largest Eigenvector Problem (C. Moler)

• Solve πT = πTP (stationary distribution vector)

• πT (I − P) = 0 (too big for direct solves)

• Start with πT
0 = e/n and iterate πT

j+1 = πT
j P (power method)

Updating Is A Big Problem

• Link structure of web is extremely dynamic

— Links on CNN point to different pages every day (hour)

Computing πT

World’s Largest Eigenvector Problem (C. Moler)

• Solve πT = πTP (stationary distribution vector)

• πT (I − P) = 0 (too big for direct solves)

• Start with πT
0 = e/n and iterate πT

j+1 = πT
j P (power method)

Updating Is A Big Problem

• Link structure of web is extremely dynamic

— Links on CNN point to different pages every day (hour)

— Links are added and deleted every sec (milli-sec?)

Computing πT

World’s Largest Eigenvector Problem (C. Moler)

• Solve πT = πTP (stationary distribution vector)

• πT (I − P) = 0 (too big for direct solves)

• Start with πT
0 = e/n and iterate πT

j+1 = πT
j P (power method)

Updating Is A Big Problem

• Link structure of web is extremely dynamic

— Links on CNN point to different pages every day (hour)

— Links are added and deleted every sec (milli-sec?)

• Google says every 3 to 4 weeks just start from scratch

Computing πT

World’s Largest Eigenvector Problem (C. Moler)

• Solve πT = πTP (stationary distribution vector)

• πT (I − P) = 0 (too big for direct solves)

• Start with πT
0 = e/n and iterate πT

j+1 = πT
j P (power method)

Updating Is A Big Problem

• Link structure of web is extremely dynamic

— Links on CNN point to different pages every day (hour)

— Links are added and deleted every sec (milli-sec?)

• Google says every 3 to 4 weeks just start from scratch

• Old results don’t help to restart (even if size doesn’t change)

— Cutoff phenomenon in random walks (P. Diaconis, 1996)

Report Card

FEATURES LSI LINK ANALYSIS

Report Card

FEATURES LSI LINK ANALYSIS

Reveals Hidden Patterns

Report Card

FEATURES LSI LINK ANALYSIS

Reveals Hidden Patterns A

Report Card

FEATURES LSI LINK ANALYSIS

Reveals Hidden Patterns A C

Report Card

FEATURES LSI LINK ANALYSIS

Reveals Hidden Patterns A C

Speed

Report Card

FEATURES LSI LINK ANALYSIS

Reveals Hidden Patterns A C

Speed B−

Report Card

FEATURES LSI LINK ANALYSIS

Reveals Hidden Patterns A C

Speed B− A+

Report Card

FEATURES LSI LINK ANALYSIS

Reveals Hidden Patterns A C

Speed B− A+

Easy To Update

Report Card

FEATURES LSI LINK ANALYSIS

Reveals Hidden Patterns A C

Speed B− A+

Easy To Update D

Report Card

FEATURES LSI LINK ANALYSIS

Reveals Hidden Patterns A C

Speed B− A+

Easy To Update D F (?↑?)

Report Card

FEATURES LSI LINK ANALYSIS

Reveals Hidden Patterns A C

Speed B− A+

Easy To Update D F (?↑?)

Scales Up

Report Card

FEATURES LSI LINK ANALYSIS

Reveals Hidden Patterns A C

Speed B− A+

Easy To Update D F (?↑?)

Scales Up D−

Report Card

FEATURES LSI LINK ANALYSIS

Reveals Hidden Patterns A C

Speed B− A+

Easy To Update D F (?↑?)

Scales Up D− A

Report Card

FEATURES LSI LINK ANALYSIS

Reveals Hidden Patterns A C

Speed B− A+

Easy To Update D F (?↑?)

Scales Up D− A

Takes Advantage of Link Structure

Report Card

FEATURES LSI LINK ANALYSIS

Reveals Hidden Patterns A C

Speed B− A+

Easy To Update D F (?↑?)

Scales Up D− A

Takes Advantage of Link Structure F

Report Card

FEATURES LSI LINK ANALYSIS

Reveals Hidden Patterns A C

Speed B− A+

Easy To Update D F (?↑?)

Scales Up D− A

Takes Advantage of Link Structure F A+

Report Card

FEATURES LSI LINK ANALYSIS

Reveals Hidden Patterns A C

Speed B− A+

Easy To Update D F (?↑?)

Scales Up D− A

Takes Advantage of Link Structure F A+

Goals

• Do better job using link structure to reveal hidden connections

Report Card

FEATURES LSI LINK ANALYSIS

Reveals Hidden Patterns A C

Speed B− A+

Easy To Update D F (?↑?)

Scales Up D− A

Takes Advantage of Link Structure F A+

Goals

• Do better job using link structure to reveal hidden connections

• Improve updating

Hybrid Approach

The Idea

• Use link structure to define measure of page (doc) contiguity

— What’s the “distance” from Pi to Pj ?

Hybrid Approach

The Idea

• Use link structure to define measure of page (doc) contiguity

— What’s the “distance” from Pi to Pj ?
— Link structure =⇒ δij �= δji

Hybrid Approach

The Idea

• Use link structure to define measure of page (doc) contiguity

— What’s the “distance” from Pi to Pj ?
— Link structure =⇒ δij �= δji

1. Compute the distance δij from Pi to Pj for all i, j

— Keep only those for which δij < τ (provides sparsity)

Hybrid Approach

The Idea

• Use link structure to define measure of page (doc) contiguity

— What’s the “distance” from Pi to Pj ?
— Link structure =⇒ δij �= δji

1. Compute the distance δij from Pi to Pj for all i, j

— Keep only those for which δij < τ (provides sparsity)

— File structure:


P1 → Pi, Pj, . . .
P2 → Pk, Pl,

Hybrid Approach

The Idea

• Use link structure to define measure of page (doc) contiguity

— What’s the “distance” from Pi to Pj ?
— Link structure =⇒ δij �= δji

1. Compute the distance δij from Pi to Pj for all i, j

— Keep only those for which δij < τ (provides sparsity)

— File structure:


P1 → Pi, Pj, . . .
P2 → Pk, Pl,

2. Match query most relevant page(s) P
— LSI — Link analysis — You pick

Hybrid Approach

The Idea

• Use link structure to define measure of page (doc) contiguity

— What’s the “distance” from Pi to Pj ?
— Link structure =⇒ δij �= δji

1. Compute the distance δij from Pi to Pj for all i, j

— Keep only those for which δij < τ (provides sparsity)

— File structure:


P1 → Pi, Pj, . . .
P2 → Pk, Pl,

2. Match query most relevant page(s) P
— LSI — Link analysis — You pick

3. Return P together with those P → Pi, Pj, Pk, Pl, . . .

Distance
What’s the “distance” from Di to Dj ?

Distance
What’s the “distance” from Di to Dj ?

• LSI uses δij = cos θij = δji

Distance
What’s the “distance” from Di to Dj ?

• LSI uses δij = cos θij = δji

{
Based only on term frequencies

No link structure

Distance
What’s the “distance” from Di to Dj ?

• LSI uses δij = cos θij = δji

{
Based only on term frequencies

No link structure

Directed Link Structure =⇒ Nonsymmetric Metric

